Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary data

Use of curcumin-modified diamond nanoparticles in cellular imaging and the distinct ratiometric detection of Mg²⁺/Mn²⁺ ions

Bo-wei Du^a, Le Trong Tien^a, Ching-Chang Lin^b, Fu-Hsiang Ko^{a*}

Hsinchu 300, Taiwan. *E-mail: fhko@mail.nctu.edu.tw

Table of contents:

FTIR and Raman spectrum of ND pristine, ND-Acid and ND-Cur particles. (S1)

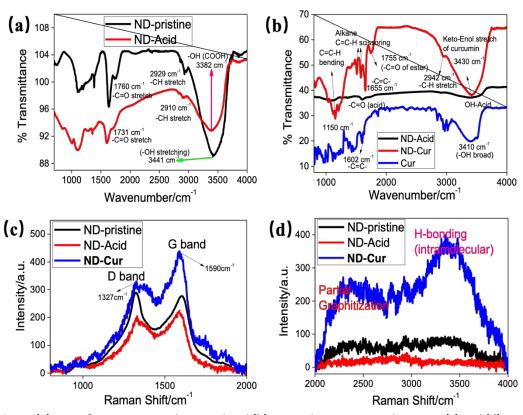
DLS analysis of **ND-Cur** in deionized water. (**S2**)

Raman spectra interrogations of ND-Cur in presence of different metal ions. (S3)

DLS analysis of ND-Cur in deionized water. (Table S1)

PL spectrum (λ_{ex} = 365 nm) of **ND-Cur** (100 µg/mL). (S4)

XRD spectrum of ND and ND-Cur. (S5)


Linear correlation diagrams of Mg²⁺, located in 0 to 45 μM and 45-100 μM, respectively. (S6)

Fluorescence spectral changes (λ_{ex} = 365 nm) of **ND-Cur** in the presence of various concentrations of Mn²⁺ and Mg²⁺ and detection limit calculated by standard deviation and linear fitting of Mn²⁺ and Mg²⁺ at pH 6.0 and 6.5, respectively. **(S7)**

Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan

^b Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan

^{*} Department of Materials Science and Engineering, National Chiao Tung University,

Fig S1. (a) FTIR of ND pristine and ND-Acid and (b) ND-acid, Curcumin and **ND-Cur**. (c) and (d) Raman spectrum of ND, ND-acid, **ND-Cur** particles.

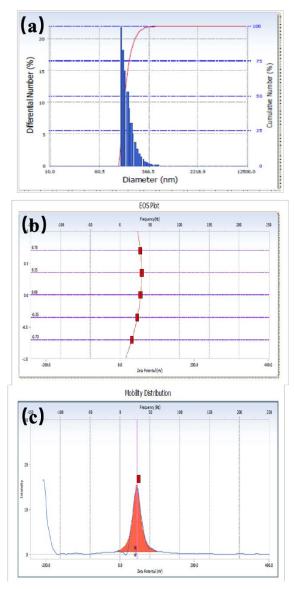


Fig S2. DLS analysis of ND-Cur in water. (a) size analysis of ND-Cur in water (100 μ g/mL in water). (b) and (c) Zeta potential of ND-Cur (100 μ g/mL in water).

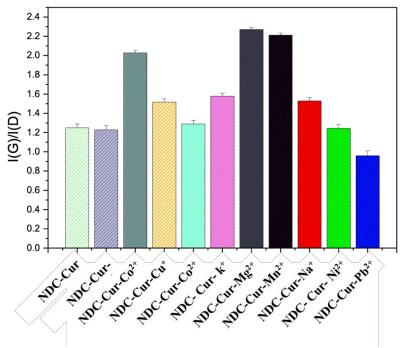


Fig S3. D and G bands and I (G)/ I (D) of ND-Cur in presence of different metal ions.

Table S1. DLS analysis of ND-Cur in deionized water.

Compound	Zeta potential (mV)	Size (nm)
ND-acid	-28.44	66.6 ± 18.6
ND-Cur	+45.38	170.6 ± 46.8

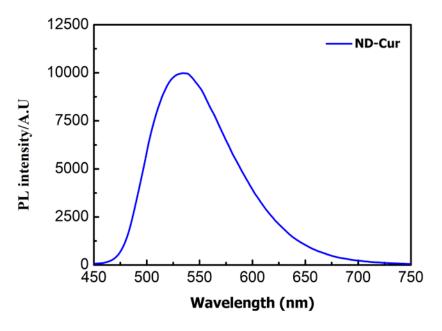


Fig S4. PL spectrum (λ_{ex} = 365 nm) of ND-Cur (100 $\mu g/mL$).

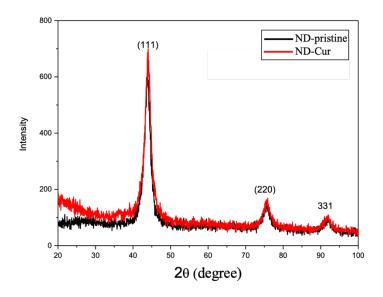


Fig S5. XRD spectrum of ND and ND-Cur.

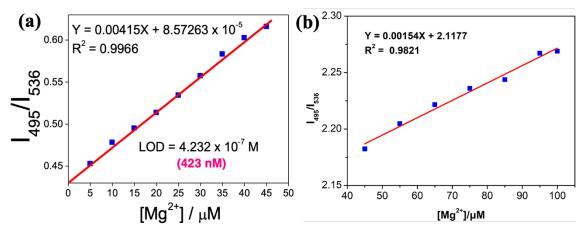


Fig S6. Linear correlation diagrams of Mg²⁺, located in (a) 0 to 45 μ M and (b) 45-100 μ M, respectively.

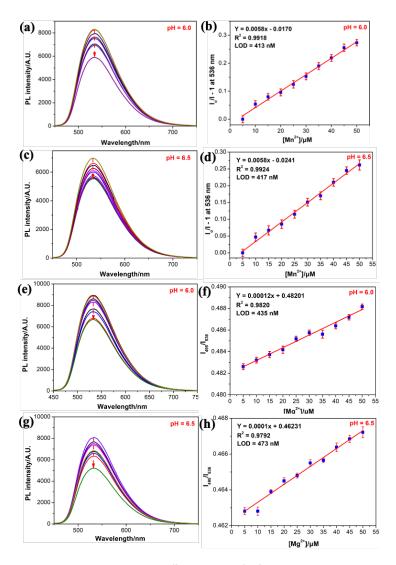


Fig S7. Fluorescence spectral changes (λ_{ex} = 365 nm) of ND-Cur in the presence of various concentrations of (a), (c) Mn²⁺ and (e), (g) Mg²⁺ and detection limit calculated by standard deviation and linear fitting of (b), (d) Mn²⁺ and (f), (h) Mg²⁺ at pH 6.0 and 6.5, respectively.