Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2021

Nanoscale

Electronic Supplementary Information (ESI)

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Glucose Oxidase Kinetics using MnO₂ Nanosheets: Confirming Michaelis – Menten Kinetics and Quantifying Decreasing Enzyme Performance with Increasing Buffer Concentration

Mahip Singh, ‡^a Ungku Zoe Anysa Ungku Faiz, ‡^a Steven Gravelsins,^a Yoshinori Suganuma,^a Nicholas Konstantine Kotoulas,^a Mark Croxall,^a Ahlia Khan - Trottier,^b Cynthia Goh,^a and Al - Amin Dhirani,^{a, c, †}

- a. Department of Chemistry, University of Toronto, Ontario, Canada, M5S 3H6
- b. Department of Biochemistry, University of Toronto, Ontario, Canada, M5S 3H6
- c. Department of Physics, University of Toronto, Toronto, Ontario, Canada, M5S 3H6
- [‡] These authors contributed equally
- + E-mail: a.dhirani@utoronto.ca

Fig. S1 Initial rate vs glucose concentration obtained by analyzing real-time kinetics data for the reaction shown in Scheme 3. The data are obtained using a UNS-Tech conductivity meter to monitor changes in conductivity arising from the production of gluconic acid (H⁺) with no buffer.

Fig. S2 ESEM image of MnO₂ Thick film used for EDS.

Fig. S3 EDS Spectra of MnO_2 thick film. Accelerating voltage of 10KeV was used. Al present due to sample holder, C present due to STEM grid. MnO_2 is relatively transparent to E-beam, so a thick film was needed to obtain spectra with appropriately high count. Characteristic Mn K α seen centred at 5.9eV and $L\alpha$ at 0.637eV

EDS Spot 2:

