Supplementary Material

MoS₂ and CdMoS₄ nanostructures based UV light Photodetector

Mahendra S. Pawar,^{a,b} Sunil R. Kadam,^c Bharat B. Kale,^{*c} Dattatray J. Late^{*,a,b,d}

Fig. S1

Fig. S1 UV-Visible spectra for MoS_2 (Black color) and $CdMoS_4$ (Red color) samples annealed at $400^{\circ}C$.

Fig. S2 Schematic of the Experimental setup for measurement of UV light Photodetector.

Fig. S3 Energy band diagram for (a) MoS_2 and (b) CdMoS₄using ITO electrode under biasing and light illumination conditions.

Photodetector mechanism under biasing and light illuminations using ITO electrode: The fig.S4 shows the energy band diagram for the Schottky barrier (ITO/MoS₂) and (ITO/CdMoS₄) in the photodetector device under biasing and light illumination conditions. The parameters such as φ_b (4.7 eV), χ_M (4 eV), φ_{b1} and φ_{b2} are the workfunction of the ITO electrode, electron affinity of the MoS₂, schottky barrier height at the ITO/MoS₂ and ITO/CdMoS₄ respectively.¹ When light falls on the device under biasing conditions electrons from the ITO layer will start crossing the schottky barrier (φ_{b1}). Once the barrier is crossed due to thermionic field emission it easily crosses the lower schottky barrier (φ_{b2}), further these electrons are collected at the positively biased Ito electrode. In case of CdMoS₄ the barrier height is lower compared to MoS₂ hence it results in the generation and collection of charge carriers. This gives rise to enhancement in the photocurrent value also the photoresponsivity.

Fig. S4 Cyclic photo response study on (a) MoS_2 and (b) CdMoS₄ samples annealed at 400^oC.

Table. 1

Material	Spectral	Responsivity	Response	Recovery Time	Ref
	Range (nm)		Time		
MoS ₂	1550	47.5 mA/W	10 ms	16 ms	2
MoS ₂ /Black	1550	153.4 mA/W	15 µs	70 μs	3
Phosphorous					
Bilayer MoS ₂	1070	5.2 A/W	44.5 s	404.7 s	4
rGO/MoS ₂		2.1 A/W	18 ms		5
MoS ₂	637	~1 A/W	64 µs	51 µs	6
MoS _{2.19}	THz	10 mA/W	5.12 s	6.33 s	7
	radiation				
Few layer MoS ₂	532	~20 mA/W	12 s	19 s	8
MoS ₂ /CsPbBr ₃	442	4.4 A/W	0.72 ms	1.01 ms	9
MoS ₂ /CdTe	780	36.6 mA/W	43.7 μs	82.1 μs	10
MoS ₂	365	3 * 10 ⁴ A/W	32 ms		11
MoS ₂	385	0.41 μAcm²/W	118 s	123 s	This work
CdMoS ₄		4 μAcm²/W	74 s	94 s	

Table 1: Comparative photodetector performance of the MoS_2 and $CdMoS_4$ to the previously reported Mo based photodetector devices.

References:

- Y. Son, Q. H. Wang, J. A. Paulson, C. J. Shih, A. G. Rajan, K. Tvrdy, S. Kim, B. Alfeeli, R. D. Braatz, and M. S. Strano, ACS Nano 2015, 9, 2843.
- 2) Z. Huang, T. Zhang, J. Liu, L. Zhang, Y. Jin, J. Wang, K. Jiang, S. Fan, and Q. Li, ACS Appl. Electron. Mater. 2019, 1, 1314.
- 3) L. Ye, H. Li, Z. Chen, and J. Xu, ACS Photonics 2016, **3**, 692.
- 4) W. Wang, A. Klots, D. Prasai, Y. Yang, K. I. Bolotin, and J. Valentine, *Nano Lett.* 2015, **15**, 7440.
- 5) R. Kumar, N. Goel, R. Raliya, P. Biswas, and M. Kumar, *Nanotechnology* 2018, **29**, 404001.
- F. Gong, H. Fang, P. Wang, M. Su, Q. Li, J. C. Ho, X. Chen, W. Lu, L. Liao, J. Wang, and W. Hu, 2017. *Nanotechnology* 2017, 28, 484002.
- Y. Xie, F. Liang, S. Chi, D. Wang, K. Zhong, H. Yu, H. Zhang, Y. Chen, and J. Wang, 2020. ACS Appl. Mater. Interfaces 2020, 12, 7351.

- 8) F. Yu, M. Hu, F. Kang, and R. Lv, Prog. Nat. Sci.: Mater. Int. 2018, 28, 563-568.
- 9) X. Song, X. Liu, D. Yu, C. Huo, J. Ji, X. Li, S. Zhang, Y. Zou, G. Zhu, Y. Wang, and M. Wu, ACS Appl. Mater. Interfaces 2018, **10**, 2801.
- 10) Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, *J. Mater. Chem. C* 2018, **6**, 4861.
- 11) S. Kumar, A. Sharma, Y. T. Ho, A. Pandey, M. Tomar, A. K. Kapoor, E. Y. Chang, and V. Gupta, J. Alloys Compd. 2020, 835, 155222.