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Fig. S1  The XRD pattern of 8# sample. 
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Fig. S2  The crystalline structures of perovskite KM'F3 and crystalline parameters for 

KNiF3, KCoF3 and KMnF3. 
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Fig. S3  SEM and TEM images of the 8# sample. 
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Fig. S4  Performance of Li half-cell: CV plots for the first three cycles of 1#-9# 

electrodes at 0.3 mV s-1 (a-i). 
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Fig. S5  Performance of Li half-cell: GCD curves for the first five cycles of 1#-9# 

electrodes at 0.1 A g-1 (a-i). 
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Fig. S6  Performance of Li half-cell: GCD curves for the respective 5rh cycles at 

0.1~3.2 A g-1 of 1#-9# electrodes(a-i). 
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Fig. S7  Performance of Li half-cell: Rate performance and coulombic efficiency of 

1#-9# electrodes(a-i). 
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Fig. S8  Performance of Li half-cell: Cycling stability and coulombic efficiency of 1#-

9# electrodes at 1 A g-1 for 1000 cycles(a-i).  
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Fig. S9 GITT curves and the corresponding Li+ diffusion coefficients of 8# electrode 

(Note: Based on the fifth GITT cycle at 0.1 A g-1, and  is 300s). 
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Fig. S10 The 1st segment (a), and 2nd segment (b) GCD curves at 0.1 A g-1 of 8# 

electrode.  
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Fig. S11  The CV plots at 10 mV s-1 (a), GCD curves at 1 A g-1 (b), Ragone plots (c) and cycling 

behavior for 10000 cycles at 1 A g-1 (d) of 1#, 2#, 4#, 7#, 8#//AC LICs 

 

Since the KNCMF-111 (1#, 2#, 4#, 7# and 8#) electrode materials demonstrate 

overall superior performance in half-cells, we further constructed LICs using these 

materials as anode and AC as cathode. Fig. S26 illustrated the electrochemical 

performance of these LICs under the working voltages of 4.5 V (the GCD curves and 

m+/m- ratios of the LICs can be seen in the Fig. S27, Table S7). Based on the results, 

one can see that the 8#//AC LIC exhibits the relatively superior performance among all 

candidates, but still suffering from an unsatisfactory energy/power densities and very 

low cycling stability due to lack of precharging (or prelithiated) treatment.  
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Fig. S12  GCD curves at 0.5-8 A g-1 of 1#, 2#, 4#, 7# and 8#//AC LICs. 
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Fig. S13  The typical precharged GCD curves of 8# anode with different precharged 

current densities 
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Fig. S14  The GCD curves at 1 A g-1 (a), Ragone plots (b), and cycling behavior for 5000 cycles 

at 5 A g-1 in the potential of 0-4.8 V(c) of 8#-P//AC LICs with the anode precharged at 0.1-2 A g-1. 

 

 

In order to optimize the percharging (prelithiation) model, three LICs were 

fabricated with 8# electrode precharged under 0.1, 0.5, 1 and 2 A g-1 in Fig. S28. Based 

on the performance shown in the Fig. S29, 30, one can see that the precharging current 

density of 0.1 A g-1 is acted as the best precharging model. 
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Fig. S15 The GCD curves at 1-16 A g-1 of 8#-P//AC LICs in the potential of 0-4.8 V with 

different precharging current densities. 
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Fig. S16  The CV plots at 10-160 mV s-1 and GCD curves at 0.5-16 A g-1of 8#-P//AC 

LICs: 4.0 V (a, e), 4.3 V (b, f),4.5 V (c, g) and 4.7 V (d, h). 
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Fig. S17  Performance of AC, AC+LMO and AC+LFP cathode: CV plots at 0.5-80 

mV s-1 (a, d, g), GCD curves at 1 A g-1 (b, e, h) and GCD curves at 0.1-3.2 A g-1 (c, f, i). 
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Fig. S18 The CV plots at 10-160 mV s-1 and GCD curves at 0.5-16 A g-1of 8#-

P//AC+LFP(1:1) LICBs: 0-4.0 V (a, e), 0-4.3 V (b, f), 0-4.5 V (c, g) and 0-4.7 V (d, h). 
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Table S1  Chemicals, reagents and materials used in the study. 

 

 

Chemials, agents 

and materials 
Type Company Characteristics 

NiCl2•6H2O AR SinoPharm purity≥98.0% 

CoCl2•6H2O AR SinoPharm purity≥99.0% 

MnCl2•4H2O AR SinoPharm purity≥99.0% 

KF•2H2O AR SinoPharm purity≥99.0% 

PVP-K30 GR SinoPharm / 

EG AR SinoPharm purity≥99.0% 

NBA AR SinoPharm purity≥99.0% 

NPA AR SinoPharm purity≥99.0% 

LiFePO4 LFP-NCO Aleees 
D50: 4 2 μm; Tap: 1 0.2 g cm-3; 

SSA:13 2 m2 g-1 

LiMn2O4 Battery grade MTI 
D59: 14-22 μm; Tap: 1.8-2.5 g cm-3; ; 

SSA: 0.5-1.2 m2 g-1 

AC YEC 8b FuZhou YiHuan 
D50: ~10 μm; Density: >0.4 g cm-3; 

SSA:2000~2500 m2 g-1 

AB Battery grade / / 

NMP AR Kermel purity≥99.0% 

PVDF Battery grade / / 

Electrolytes LBC-305-01 CAPCHEM 1 M LiPF6/EC:EMC:DMC (1:1:1) /1% VC 

Li plate 15.6*0.45 mm China Energy 15.6*0.45 mm 

Cu foil 200*0.015 GuangZhou JiaYuan Total thickness: 15 μm; weight: 87 g m-2 

Carbon coated- 

Al foil 
222*0.015 GuagZhou NaNuo Total thickness: 17 μm; Strength: 192 Mpa 

Glass 

microfiber filters 

GF/D 2.7 μm; 

1823-025 
Whatman 

Diameter: 25 mm; Thickness: 675 μm; 

weight: 121 g m-2 

Cell components CR-2032 
ShenZhen 

TianChenHe 
/ 
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Table S2 The synthesis conditions of nine KNCMF-111 samples. 

 

 

 

 

 

 

 

 

 

 

 

Note: EG  ethylene glycol;  NBA  n-butyl alcohol;  NPA  n-propyl alcohol. 

 

 

 

 

 

 

 

 

 

 

 

 

Samples 

Experimental conditions 

n(total metal 

salt )/n(KF) 
Solvent Temperature Time 

1# 1:2 EG 160 ℃ 6 h 

2# 1:2 EG+NBA (1:1) 170 ℃ 12 h 

3# 1:2 EG+NPA (1:1). 180 ℃ 24 h 

4# 1:2.5 EG 170 ℃ 24 h 

5# 1:2.5 EG+NBA (1:1) 180 ℃ 6 h 

6# 1:2.5 EG+NPA (1:1). 160 ℃ 12 h 

7# 1:3 EG 180 ℃ 12 h 

8# 1:3 EG+NBA (1:1) 160 ℃ 24 h 

9# 1:3 EG+NPA (1:1) 170 ℃ 6 h 
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Table S3  Specific capacity (mAh g-1) and cycling behavior of 1#-9#, AC, AC+LMO (1:1) and 

AC+LFP (1:1) electrodes in non-aqueous system. 

 

Samples 

Current density/（A g-1） Cycling Retention%/  

1 A g-1 /1000 cycles 0.1 0.2 0.4 0.8 1.6 3.2 

1# 161.37 146.09 124.93 92.00 65.92 43.18 196 

2# 196.71 156.15 116.89 83.48 58.09 39.01 190 

3# 233.99 191.08 166.11 116.70 79.92 50.86 58 

4# 232.96 192.38 171.26 121.37 86.18 56.62 80 

5# 256.82 223.01 168.27 122.20 79.69 42.24 39 

6# 274.86 238.94 196.17 143.27 84.36 41.76 39 

7# 173.41 136.63 106.00 75.07 49.98 33.68 208 

8# 342.81 285.50 225.11 176.89  117.33 63.13 40 

9# 323.08 283.38 220.07 157.97  96.26 48.42 20 

AC 84.52 74.40 63.69 55.95 48.21 39.88 72 

AC+LMO 126.43 110.11 95.28 79.14 60.56 43.27 36 

AC+LFP 113.42 104.56 96.56 88.05 78.64 68.43 87 
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Table S4  The design of electrode mass ratios of LICs and LICBs. 

 

LICs/ 

LICBs 

Qm-(mAh g-1)/Qm+(mAh g-1) at 0.1-3.2 A g-1 

m+/m- 
0.1 0.2 0.4 0.8 1.6 3.2 

1#//AC 1.9 2.0 2.0 1.6 1.4 1.1 1.7 

2#//AC 2.3 2.1 1.8 1.5 1.2 1.0 1.7 

4#//AC 2.8 2.6 2.7 2.2 1.8 1.4 2.3 

7#//AC 2.1 1.8 1.7 1.3 1.0 0.8 1.5 

8#//AC 4.1 3.8 3.5 3.2 2.4 1.6 3.1 

8#-P//AC 4.1 3.8 3.5 3.2 2.4 1.6 3.1 

8#-P//AC+LFP 3.0 2.7 2.3 2.0 1.5 0.9 1.5* 

*Note: The m+/m- value was designed considering the excess of anode in the LICBs. 
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Table S5  Specific capacity and cycling retention of KNCMF-111(8#-P)//AC LICs under different 

working voltages 

 

Voltages 
Energy density 

/ Wh kg-1 

Power density 

/ kW kg-1 

Cycling retention 

% 

0-4.0 V 79.54-15.18 0.24-7.81 

100%/1000/10 A g-1 

95%/2000/10 A g-1 

90%/3000/10 A g-1 

90%/4000/10 A g-1 

0-4.3 V 101.60-18.64 0.26-8.39 

100%/1000/10 A g-1 

95%/2000/10 A g-1 

95%/3000/10 A g-1 

82%/4000/10 A g-1 

0-4.5 V 116.16-25.85 0.27-8.78 

92%/1000/10 A g-1 

77%/2000/10 A g-1 

74%/3000/10 A g-1 

70%/4000/10 A g-1 

0-4.7 V 136.50-32.10 0.29-9.17 

69%/1000/10 A g-1 

66%/2000/10 A g-1 

60%/3000/10 A g-1 

47%/4000/10 A g-1 
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Table S6  Specific capacity and cycling retention of KNCMF-111(8#-P)//AC+LFP LICBs under 

different working voltages 

 

Voltages 
Energy density 

/ Wh kg-1 

Power density 

/ kW kg-1 

Cycling retention 

% 

0-4.0 V 153.26-12.09 0.58-10.88 

90%/1000/10 A g-1 

84%/2000/10 A g-1 

84%/3000/10 A g-1 

84%/4000/10 A g-1 

0-4.3 V 159.25-27.02 0.59-12.16 

84%/1000/10 A g-1 

84%/2000/10 A g-1 

79%/3000/10 A g-1 

76%/4000/10 A g-1 

0-4.5 V 168.39-41.07 0.59-13.44 

83%/1000/10 A g-1 

78%/2000/10 A g-1 

78%/3000/10 A g-1 

70%/4000/10 A g-1 

0-4.7 V 184.77-48.53 0.58-13.44 

73%/1000/10 A g-1 

65%/2000/10 A g-1 

60%/3000/10 A g-1 

54%/4000/10 A g-1 
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Table S7 A comparison for the performance of the KNCMF-111 (8#-P)//AC+LFP 

LICBs in the study with some reported LICs and LIBs. 

 

 

System 

Working 

voltage 

/ V 

Energy 

density 

/ Wh kg-1 

Power 

density 

/ kW kg-1 

Cycling  

retention 

% 

Refs

. 

LICs 

3S-Nb2O5-HoMSs//AC 1-3.5 93.8-19.6 0.1125-22.5 89%/10000/1 A g-1 [1] 

Soft Carbon//AC/Li3N 2-4 74.7(Max.) 12.9(Max.) 91%/10000/0.5 A g-1 [2] 

N-NbOC//AC 0-3 86.6-58.7 0.112-3.84 81%/3500/3 A g-1 [3] 

M-Nb2O5@C/rGO//AC 0.7-3.2 69.2-4.04 0.248-9.17 94%/2500/0.2 A g-1 [4] 

cNiCo2O4//VACNFs 1-4.2 136.9 0.2 90%/9000/4 A g-1 [5] 

Co3(HHTP)2//ACS 0-4 150-64 0.2-10 65%/1000/1 A g-1 [6] 

LIBs 

Graphite//LiCrTiO4 0.8-2.5 103 / 63%/200/0.25 A g-1 [7] 

Ni/NiO/NC//LiCoO2 2.8-4.2 / / 90%/100/0.2 C [8] 

PyPF//LiFePO4 2.5-4 141 / 78%/100/0.05 A g-1 [9] 

m-Si HC/grahite//LiCoO2 2.5-4.2 / / 73%/100/0.05 C [10] 

MnO@C-rGO//LiFePO4/Al 0-3.5 / / 90%/100/0.5 A cm-2 [11] 

LICBs 

 

KNCMF-111(8#-P) 

//AC+LFP 

 

0-4.0 153.26-12.09 0.58-10.88 
84%/3000/10 A g-1 

84%/4000/10 A g-1 

 

0-4.3 159.25-27.02 0.59-12.16 
79%/3000/10 A g-1 

76%/4000/10 A g-1 

0-4.5 168.39-41.07 0.59-13.44 
78%/3000/10 A g-1 

70%/4000/10 A g-1 

0-4.7 184.77-48.53 0.58-13.44 60%/3000/10 A g-1 
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