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ELECTRONIC STRUCTURE SIMULATIONS

The workflow of our ab-initio and many-body simulations is depicted in Fig. S1. In the following we discuss in
detail the individual steps.

DFT computational details

We have used Vienna ab-initio Simulation Package1 (VASP) for the DFT calculations. The device is periodic in
the x-direction. In the y-direction the separation from the periodic image is more than 16Å. The vacuum in the
z-direction is 20Å. Ionic positions of all the structures have been optimized. The plane-wave projector augmented
wave basis was used in the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) for the exchange
correlation potential. The plane-wave cutoff energy used was 400 eV. A 10×1×1 Monkhorst Pack k-mesh was used for
the integration in the Brillouin zone. Atoms were relaxed until the Hellmann-Feynman forces were below 0.01 eV/Å.
As electronic correlations play a crucial role in determining the SCO, it is reasonable to include their feedback also in
the structural relaxation. We have performed structural relaxation within the DFT+U formalism2 with interaction
parameters U = 4.0 eV and J = 1.0 eV, which take into account the static contributions of the Coulomb repulsion,
and, to some extent, can already describe the SCO. It has to be noted that the parameters for the many-body
calculations, i.e., the hybridization functions and crystal fields (see also below), are obtained from non-spin polarised
(i.e., sans U) calculations using those relaxed structures (obtained in DFT+U) while dynamical correlation effects are
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FIG. S1. Flowchart of the ab-initio and many-body calculations. For each step, we indicate the level of theory employed. The
structural relaxation is performed within DFT+U, to take into account the effect of the Coulomb repulsion. The electronic
structure calculation needed to extract the parameters of the impurity model is performed at the level of DFT (i.e., sans U) since
electronic correlations within the Fe-3d multiplet are recovered at a higher level of theory within the many-body calculations.
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incorporated within the explicit many-body techniques.

Many-body effects: DFT++

To investigate the molecular spin-crossover, we have employed a combination of DFT and many-body techniques
within a multi-orbital Anderson impurity model (AIM), which is usually referred to as a DFT++ method.3

Anderson impurity model

A realistic description of the complete system is obtained within DFT. This allows to extract ab-initio parameters
to describe a correlated sub-space, i.e., the impurity, corresponding to the Fe-3d multiplet, which is coupled to a bath,
corresponding to the rest of the system, including both the porphyrin ligands and the zGNR leads, via a retarded
hybridization function. The impurity is supplemented with a Coulomb interaction, and the resulting many-body
problem can be solved numerically. The Hamiltonian of the AIM can be expressed as

H =
∑
ij

εdijd
†
iσdjσ +

1

2

∑
ijkl

∑
σσ′

Uijkld
†
iσd
†
jσ′dlσ′dkσ

+
∑
im

∑
σ

(Vimc
†
mσdiσ + h.c.) +

∑
m

∑
σ

εmc
†
mσcmσ,

(S1)

where diσ (d†iσ) denote the annihilation (creation) operators of an electron in impurity (Fe-3d) orbital i with spin σ,
and cmσ(c†mσ) denote the annihilation (creation) operators of an electron in bath orbital m with spin σ and energy
εm. The coupling between Fe-3d and bath orbitals is given by Vim. The matrix εdij describes the crystal field and
Uijkl represents the full Coulomb tensor within the Fe-3d multiplet. The rotationally-invariant Coulomb interaction is
parametrized via the Slater radial integrals4,5 F 0, F 2, and F 4, such that U = F 0 and J = 1

14 (F 2 +F 4), with the ratio

F 4/F 2 = 0.625, yielding a spherically symmetric tensor.6,7 In the presence of a crystal field, the spherical symmetry
is lifted. This effect could be taken into account, e.g., within the constrained random phase approximation,8 but we
do not expect it to change any of the conclusions of our analysis.

Embedding the Fe-atom: Hybridization function

In order to calculate the hybridization function ab-initio, the Kohn-Sham Green’s function GKS is calculated from
the Lehmann representation

GKS(ω) =
∑
nk

|ψnk〉 〈ψnk|
ω + iδ − εnk

, (S2)

where ψnk and εnk are the Kohn-Sham eigenstates and eigenvalues for band n and reciprocal-space point k, while δ is
an infinitesimal broadening, indicating GKS to be the retarded propagator. This Green’s function is then projected
onto a local (impurity) propagator G0, evaluated on atom-centered, localized orbitals χi. In this basis, the local
Green’s function reads

Gij0 (ω) =
∑
nk

P̃ ink(P̃ jnk)∗

ω + iδ − εnk
(S3)

where P ink = 〈χi|ψnk〉 are projection matrices normalized as

P̃ ink =
∑
j

[O(k)]−1/2P jnk, (S4)

with the overlap operator

Oij(k) =
∑
n

P ink(P jnk)∗. (S5)
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FIG. S2. (a) Orbital-resolved hybridization function ∆(ω) for the unstrained device. The dx2−y2 peak at εb = −2.03 eV
dominates the frequency structure. (b) Evolution of the hybridization function across the SCO, at 0% (solid) and 5% (dashed
lines) strain.
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FIG. S3. Orbital-resolved and total many-body spectral functions for the LS (2% strain, respective top panels) and HS state
(2.5% strain, bottom panels). Arrows indicate the shifting of individual spectral features between LS and HS while the dots
indicate the energies of the corresponding single-particle state in the effective level diagram of Fig. S5. The dots qualitatively
follow the centre of gravity of the different orbital characters, thus encoding the overall orbital shifts. On the right of each panel,
we indicate the nominal spin configuration of the selected orbital and spin state. Note that the dxy and dz2 orbitals weakly
hybridize with the ligands, therefore even though they display sharp resonances close to the Fermi level, their corresponding
contributions in the transmission function are strongly suppressed, see Fig. S7.

Finally, the hybridization function is calculated from the local impurity Green’s function from the expression

∆ij(ω) =
[
ω + iδ

]
δij − εdij −

[
G−1

0

]
ij

(ω). (S6)

Note that the hybridization function includes also off-diagonal terms if the projected Fe-3d orbital are not orthogonal
(i.e., εdi6=j 6= 0). In the current cases ∆i 6=j � ∆ii for any pair (i, j), and neglecting these contributions yields an
expression equivalent to the one given in the manuscript, yet projected on the localized Fe-3d orbitals. The diagonal
elements of the hybridization function ∆ii(ω) are shown in Fig. S2, clearly indicating that the dx2−y2 is the dominant
contribution among them.
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Spectral functions

In Fig. S3 we show the ED spectral functions for one strain below the spin-crossover (2% strain, LS) and one above
(2.5% strain, HS), resolved into the individual Fe-3d orbitals. As indicated by the horizontal arrows, spectral features
jump to significantly different positions when the spin-crossover is triggered. In particular, spectral weight of dx2−y2
(dz2) character moves to (away from) the Fermi level, in congruence with our analysis of the transmission function in
the main manuscript.

Numerical solution: ED vs. QMC

The AIM in Eq. (S1) can be solved with several numerical techniques, each with their advantages and disadvan-
tages. Here we adopt exact diagonalization (ED) for the results presented in the manuscript and continuous-time
Quantum Monte Carlo9 (QMC) as a benchmark. A schematic representation of the ED and QMC algorithms is
shown in Figs. S4(a,b) while results for the corresponding transmission function, are shown in Fig. S4(c). This
comparison highlights a remarkable agreement for both 0% and 5% tensile strain, which correspond to LS and
HS state configurations, respectively. This analysis shows that the physical scenario underlying the SCO in the
zGNR-FeP-zGNR device is robust with respect to the details of our numerical calculations.

ED solver. As the ED solver is based on the Hamiltonian formalism, the dynamical hybridization function is
discretized, i.e., approximated by a finite number of bath sites. The hybridization function in Fig. S2 is dominated
by the diagonal dx2−y2 contribution, and the second strongest hybridization is the dyz one. Hence, for the ED
calculations, it is sufficient to fit those two contributions with one pole each. This procedure yields the bath orbital
energies εb and the corresponding coupling V for the dx2−y2 and dyz orbitals listed in Tab. I.

TABLE I. Anderson parameters of the ED calculations, for different values of uniaxial strain.

Parameters [eV]
Strain [%]

0 1 2 2.5 3 4 5

Vd
x2−y2 3.04 2.97 2.80 2.61 2.56 2.45 2.35

εbd
x2−y2

-2.03 -2.08 -2.13 -2.13 -2.14 -2.15 -2.18

Vdyz 0.74 0.76 0.79 0.76 0.79 0.83 0.89

εbdyz
-1.78 -1.80 -1.81 -1.80 -1.79 -1.79 -1.81

In the solution of the many-body problem, we include a double counting correction to compensate for the DFT
contribution of the Coulomb interaction. We adopt the fully localised limit (FLL) form10,11 given by

εDC = U

(
n− 1

2

)
− J

2

(
n− 1

)
(S7)

with n being the total impurity occupation. However, instead of considering the DFT-occupations, we obtain εDC in
a charge self-consistent manner, i.e., we start with an initial guess of εDC, obtain new occupations in ED and calculate
a new εDC. The process is iterated until we obtain a convergence over the total occupation.

The solution of the AIM yields a retarded self-energy matrix Σij(ω) that takes into account the many-body effects
within the Fe-3d multiplet. The corresponding many-body Green’s function is given by

G−1
ij (ω) =

[
ω + ıδ + εDC

]
δij − εdij −∆ij(ω)− Σij(ω), (S8)

which in turn allows to evaluate the transmission function and investigate the transport properties of the device, see
below.

Note that in the DFT++ framework it is possible to obtain a paramagnetic solution, so that the Hamiltonian, the
hybridization function, the self-energy, and eventually also the many-body Green’s function, are not spin-polarized.
In contrast to, e.g., DFT+U, this scheme allows us to describe a fluctuating local moment on the Fe atom and the
transport properties across the SCO in the absence of any static magnetic order.

QMC solver. Within the QMC algorithm, the dynamical nature of the hybridization function can be fully taken
into account, and the double counting correction is implemented by fixing the occupation of the Fe-3d manifold
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FIG. S4. Schematic representation of (a) ED and (b) QMC impurity solvers. (c) Transmission function at 0% and 5% tensile
strain, obtained from many-body calculations with both solvers. The curves are shifted vertically for a better visibility.

n =
∑
iσ〈niσ〉 to the values nLS = 6.7 and nHS = 6.4 electrons. These values are chosen in correspondence with

the impurity occupations in ED for the two different spin-states. Due to technical complications, it is convenient to
neglect the off-diagonal elements of the Hamiltonian and the hybridization function. As a result, the QMC self-energy
becomes diagonal in orbital space, i.e., Σij(ω) = δijΣii(ω). The remarkable agreement found between the QMC and
ED data allows us to verify a posteriori that (i) the off-diagonal components of the self-energy have a negligible effect
on the result, and (ii) the hybridization function is well approximated with two ED bath sites. In the context of a
free FeP molecule, the convergence of spin-transition energy with the number of bath sites was checked in a previous
publication,12 further justifying our choice here. Let us also note that, in the case of QMC, an additional step is
required, namely to analytically continue the Matsubara self-energy to the real-frequency axis via a maximum entropy
method.13

Competition between ligand crystal field and Coulomb interaction

In order to have a better grasp of the competition between the ligand crystal field and the Coulomb interaction,
one can extract an effective energy level diagram from the ED calculations. We consider an effective 7×7 Hamiltonian
for the five Fe-3d and the two ligand orbitals, which in block-matrix form can be represented as

Heff =

(
εd V

V † εb

)
+

(
Σ∞ 0

0 0

)
. (S9)

In this notation, εd is a 5×5 matrix representing the crystal fields of the Fe-3d multiplet, εb is a 2×2 (diagonal)
matrix with the ligand orbital energies, and V is a 2×5 matrix with only two non-zero elements, corresponding to
the couplings Vdx2−y2 and Vdyz

defined above, while Σ∞ = <Σ(ω → ∞) is the static contribution to the many-

body self-energy in the Fe-3d subspace. Since the parameters of the model depend on strain, we can define a family
of Hamiltonians. For a given strain, the diagonalization of the respective Hamiltonian yields the eigenvalues {εi}
corresponding to molecular orbitals (MOs) with Fe-3d and ligand mixed character.

In Fig. S5(a) we show the MO eigenvalues obtained by considering the effect of the ligands without the self-energy
contribution. Starting from the isolated subspaces of the unstrained device, due to the couplings between the dx2−y2
and dyz orbitals and their bath sites, the system creates bonding and anti-bonding MOs. However, tensile strain has
surprisingly very little effect on the energy level diagram. Even at 5% strain, the anti-bonding MO with predominant
dx2−y2 character is still far above the Fermi level, εdx2−y2 ≈ 1.8 eV. This suggests that the structural changes alone are

not able to trigger the SCO. Including the self-energy contributions the scenario changes substantially, as shown in In
Fig. S5(b). The ligand field splitting ∆LF = εdx2−y2 − εdxy is reduced upon strain and at the same time εdx2−y2 ≈ EF ,

thus triggering the SCO.
It is interesting to compare the ligand fields to the Coulomb energy difference ∆Coulomb between the atomic LS and

HS states. Although we consider the full Coulomb tensor Uijkl in the numerical calculations, an intuitive picture can
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FIG. S5. Effective level diagram for the Fe-3d multiplet with two bath site model within the static approximation for the
self-energy. Effect of the ligand field (a) alone and (b) together with many-body effects. The latter is necessary to trigger the
SCO at realistic values of tensile strain. Both (a) and (b) use, for a given strain, the same structure.

LS HS

FIG. S6. Within the density-density approximation, the Coulomb energy difference between the atomic LS and HS states is
given by ∆Coulomb = 2J1 + 3J3. Since U is the same for all orbitals, the energy difference is obtained from the variation of
exchange interactions (grey arrows) associated to the electron promoted from the dxy to the dx2−y2 orbital across the SCO
(marked in red).

already be obtained within a (simplified) density-density approximation, under the assumption of a cubic ligand field.
Then, the Coulomb interaction reduces to

Uiiii;σσ = U0

U i6=jijji;σσ′ = U0 − 2Jij − Jijδσσ′ ,
(S10)

and is given in terms of an intra-orbital interaction U0 (which is the same for all orbitals) and four exchanges
Jij = {J1, J2, J3, J4}. Including the term of the Coulomb tensor beyond the density-density approximation cannot
be done at this intuitive level, because they conserve neither the spin-orbital charge niσ nor the spin projection Szi
quantum numbers. An extensive discussion of the Coulomb parametrization can be found in the literature.4–7

Under the above conditions, the Coulomb energy difference between the atomic LS and HS states in terms of the
exchange parameters is given by

∆Coulomb = ELS
Coulomb − EHS

Coulomb = 2J1 + 3J3. (S11)

The physical interpretation of this result is shown in Fig. S6 and is summarized as follows. The LS and HS states
differ in the occupation of the dxy and dx2−y2 orbitals. Since the direct Coulomb interaction is the same for each pair
of orbitals, its contribution is the same in both states. However, with respect to the LS state, in the HS state there
is an additional interaction term −3J1 between the parallel dxy and dx2−y2 spins and two additional terms −J1 since
the spin in dx2−y2 is now parallel to those in the dxz and dyz orbitals. We find that ∆Coulomb ∼ 2.83 eV, which is
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of the same order of magnitude as the ligand field splitting between the dxy and dx2−y2 orbitals. Hence, even this
approximate picture confirms the competition between the ligand field and the Coulomb interaction to be at the root
of the SCO phenomenology. Moreover, this procedure intuitively shows that the many-body renormalization of the
ligand field plays a crucial role in the determining which spin state becomes energetically favorable, and at which
critical strain value.

TRANSPORT SIMULATIONS

Effective Fe model for transport calculations

In the standard quantum transport formalism, the transmission function is evaluated through the Landauer for-
mula14,15

T (ω) = T (ω) = Tr
[
ΓL(ω)G†(ω)ΓR(ω)G(ω)

]
, (S12)

where G(†)(ω) denotes the retarded (advanced) real-space Green’s function, which is a matrix in the basis spanning
the whole scattering region, and Γα(ω) = ı[Σα(ω) − Σ†α(ω)] represents the coupling to the leads, given in terms of
the embedding self-energy Σα(ω).

In general, this approach requires a projection of the whole scattering region from plane-waves onto Wannier
orbitals, which is far from trivial.16,17 In particular, for complex devices such as the one considered here, it becomes a
prohibitive task. Hence, we follow an alternative route, taking advantage of the local projection onto the Fe impurity,
which was used to evaluate the many-body self-energy. We stress, that the many-body self-energy is dynamical and
non-hermitian and required us to implement the Landauer formula for general, interacting Green’s functions.

We evaluate the Landauer formula of Eq. (S12) through the Fe-3d orbitals, for which the Green’s function includes
the many-body effects stemming from the Coulomb interaction8,14,15,18,19 and treat the rest of the device as the
leads. Physically, this corresponds to considering the transmission channels in which the electrons tunnel coherently
through the correlated Fe atom, and the transmission function will qualitatively mirror the spectral properties of the
impurity.14,15 In practice, we define the embedding self-energies as ΣL(ω) + ΣR(ω) = ∆(ω) and, since the device is
symmetrical along the transport direction, the most natural choice is to assume ΣL = ΣR. In this framework, the
transmission function (per spin) becomes

T (ω) =
∑
``′rr′

ΓL``′(ω)Ga`′r(ω)ΓRrr′(ω)Grr′`(ω) (S13)

where indices runs over all orbitals of the Fe-3d multiplet. Each orbital contribution to the transmission function is
obtained by setting to zero all other components of the coupling matrices ΓL and ΓR, thus isolating the corresponding
element of the Green’s function. Hence, for each component α the transmission is given by

Tα(ω) = ΓLαα(ω)Gaαα(ω)ΓRαα(ω)Grαα(ω). (S14)

Note that since neither the embedding self-energy nor the Green’s function itself are modified in this procedure, the
sum over (diagonal and off-diagonal) channels yields the full transmission function.

Upon application of a bias voltage Vb, the electric current (per spin) driven through the Fe atom is given by

I =
e

h

∫ ∞
−∞

dω T (ω)
[
fL(ω)− fR(ω)

]
, (S15)

where e is the electron charge, h is Plank’s constant. The Fermi-Dirac distribution function for the L and R electrodes
is given by

fL/R(ω) =
1

1 + exp[(ω − µL/R)/(kBT )]
, (S16)

where µL−µR = eVb is the symmetric bias drop, kB is the Boltzmann constant and T the temperature. We assumed
a temperature broadening kBT = 25 meV, i.e., close to room temperature, but the results are qualitatively identical
to those obtained for smaller broadenings. The current in Eq. (S15) is evaluated neglecting the dependence of the
transmission function on the bias voltage, i.e., T (E, Vb) ≈ T (E), which is a reasonable assumption in the low-bias
regime.14,15,20
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In principle, there are also other transmission channels through the device, which do not involve the Fe atoms.
The electrons are instead transported through the organic framework of the porphyrin molecule. Those transmission
channels display resonances far (at least ≈ 1 eV) from the Fermi level, corresponding to the molecular orbitals with
dominant porphyrin C character. Since the ligands states are described by the hybridization function, Eq. (S6), they
can be observed in the spectral function of Fig. S3. Within the considered bias window [−eVb/2, eVb/2], with eVb up
to 0.5 eV, the off-resonant contributions of those channels constitute a background signal in the transmission function
(and hence in the electric current). The effects of strain on such a background are certainly negligible with respect to
the dramatic changes induced by the SCO due to the appearance of the Fe-dx2−y2 resonance at the Fermi level.
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Strain evolution of pertinent orbital contributions to the transport properties

The changes in the electronic structure of the Fe atom across the SCO directly affect the transport properties
of the device. This is evident when considering the orbital resolved contributions to the transmission function, as
shown in Fig. S7 for all values of strain. In the LS state, Fig. S7(a-c) the resonance corresponding to the unoccupied
antibonding dx2−y2 orbital lies ≈ 2 eV above the Fermi level. Upon applied strain, the resonance progressively shifts
towards the Fermi level. At the SCO, the dx2−y2 resonance jumps and is pinned to the Fermi level, Fig. S7(d), and
dominates the transmission function in the HS state. Further increasing the strain suppress the dx2−y2 resonance, as
spectral weight is shifted below the Fermi level, thus reducing the transmission.

The corresponding trend is also observed in the electric current, which is shown in Fig. S8(a-g) for all values of
strain. Across the SCO, the discontinuous behavior of the I-V characteristics is associated with the change in the
character of the dominant contribution, from mainly dz2 in the LS state to dx2−y2 in the HS state. Since the current
is dominated by a resonant contribution close to the Fermi level for all values of strain, the behavior of the I-V
characteristics follows closely the one of the transmission at the Fermi level, shown in Fig. 4(e) of the manuscript.
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