Supporting Information

Induction Heating Induced Self-Healing of Nanocomposites Based on Surface-Functionalized Cationic Iron Oxide Particles and Polyelectrolytes

Bastian Oberhausen, Guido Kickelbick

Inorganic Solid-State Chemistry, Saarland University, Campus C41, 66123 Saarbrücken,

Germany

E-mail: guido.kickelbick@uni-saarland.de

Content

1. NMR and FTIR spectra of cationic organophosphorus coupling molecule and its precursors	2
2. NMR and FTIR spectra of sodium 4-(methacryloyloxy)butan-1-sulfonate	8
3. FTIR spectra of the synthesized copolymers	9
4. FTIR spectra of the synthesized composites	10
5. FTIR, DLS and TGA measurements of OA@Fe _x O _Y	11
6. NMR, CHN and TGA data of ^{0.025} P@Fe _x O _Y - ^{0.600} P@Fe _x O _Y	12
7. Investigations on phosphonic acid desorption	14
8. NMR, FTIR and DSC data of the homopolymers	15
9. DSC and TGA data of P(SS)	17
10. TGA and DSC data of the synthesized composite materials	18
11. Control experiments for the field induced healing experiments	20

1. NMR and FTIR spectra of the cationic organophosphorus coupling molecule and its precursors

Figure S1: ¹H NMR spectrum of diethyl(6-bromohexyl) phosphonate.

Figure S2: ¹³C NMR spectrum of diethyl(6-bromohexyl) phosphonate

Figure S3: ³¹P NMR spectrum of diethyl(6-bromohexyl) phosphonate.

Figure S4: FTIR spectrum of diethyl(6-bromohexyl) phosphonate.

Figure S5: ¹H NMR spectrum of 6-(diethoxyphosphoryl)-N,N,N-trimethylhexan-1-aminium bromide.

Figure S6: ¹³C NMR spectrum of 6-(diethoxyphosphoryl)-N,N,N-trimethylhexan-1-aminium bromide.

Figure S7: ³¹P NMR spectrum of 6-(diethoxyphosphoryl)-N,N,N-trimethylhexan-1-aminium bromide.

Figure S8: FTIR spectrum of 6-(diethoxyphosphoryl)-N,N,N-trimethylhexan-1-aminium bromide.

Figure S9: ¹H NMR spectrum of N,N,N-trimethyl-6-phosphonhexan-1-aminium bromide.

Figure S10: ¹³C NMR spectrum of N,N,N-trimethyl-6-phosphonhexan-1-aminium bromide.

Figure S11: ³¹P NMR spectrum of N,N,N-trimethyl-6-phosphonhexan-1-aminium bromide.

Figure S 12: FTIR spectrum of N,N,N-trimethyl-6-phosphonhexan-1-aminium bromide.

2. NMR and FTIR spectra of sodium 4-(methacryloyloxy)butan-1-sulfonate

Figure S13: ¹H NMR spectrum of sodium 4-(methacryloyloxy)butan-1-sulfonate.

Figure S14: ¹³C NMR spectrum of sodium 4-(methacryloyloxy)butan-1-sulfonate.

Figure S15: FTIR spectrum of sodium 4-(methacryloyloxy)butan-1-sulfonate.

3. FTIR spectra of the synthesized copolymers

Figure S16: FTIR spectra of the synthesized copolymers.

4. FTIR spectra of the synthesized composites

Figure S17: Ir spectra of the a) ¹⁰Pol, b) ⁸Pol, c) ⁵Pol and d) ³Pol based nanocomposites.

5. FTIR, DLS and TGA measurements of $OA@Fe_XO_Y$

Figure S18: FTIR spectra of Oleic acid (red) and OA@Fe_XO_Y.

Figure S19: DLS curves of OA@Fe_XO_Y from three different batches in *n*-hexane.

Figure S20: TGA curves of OA@Fe_XO_Y from three different batches.

6. NMR, CHN and TGA data of $^{0.025}P@Fe_XO_Y - ^{0.600}P@Fe_XO_Y$

Figure S21: ³¹P NMR spectra of the supernatant solutions of ^{0.025}P@Fe_XO_Y - ^{0.600}P@Fe_XO_Y.

Sample	TG Residual Mass [%]		CHN [%]			Surface Coverage [mmol/g]		
	25-880°C N ₂	880-1000°C air	С	Н	Ν	С	Н	Ν
OA@Fe _X O _Y	80.28	83.41	9.09	1.71	-	0.52	0.62	-
$^{0.025}$ P@Fe _X O _Y	78.38	84.95	8.93	1.63	0.48	1.05	0.90	0.44
^{0.050} P@Fe _X O _Y	73.71	83.30	9.34	1.88	0.73	1.17	1.10	0.71
$^{0.100}$ P@Fe _X O _Y	71.51	81.64	10.45	2.34	0.89	1.35	1.41	0.89
^{0.200} P@Fe _X O _Y	69.50	80.68	11.30	2.48	1.00	1.50	1.54	1.03
^{0.300} P@Fe _X O _Y	69.04	79.62	11.94	2.51	1.11	1.60	1.57	1.15
$^{0.400}$ P@Fe _X O _Y	67.90	79.04	12.31	2.64	1.10	1.68	1.68	1.16
^{0.600} P@Fe _X O _Y	66.18	77.84	12.44	2.53	1.26	1.74	1.65	1.36

Table S1: TGA and CHN values of oleic acid and the phosphonic acid functionalized nanoparticles.

Table S2: Residual C and H content after subtraction of the phosphonic acid proportion.

C _{exp}	H _{exp}	N _{exp}	C _{phos}	H _{phos}	N _{phos}	C _{resid}	H _{resid}	N _{resid}	C:H _{resid}
8,93	1,63	0,48	3,70	0,79	0,48	5,23	0,84	-	6,25
9,34	1,88	0,73	5,63	1,21	0,73	3,71	0,67	-	5,51
10,45	2,34	0,89	6,86	1,47	0,89	3,59	0,87	-	4,13
11,30	2,48	1,00	7,71	1,65	1,00	3,59	0,83	-	4,34
11,94	2,51	1,11	8,56	1,83	1,11	3,38	0,68	-	5,01
12,31	2,64	1,10	8,48	1,82	1,10	3,83	0,82	-	4,66
12,44	2,53	1,26	9,71	2,08	1,26	2,73	0,45	-	6,09

Sample	CHN [%]			
	С	Н	N	
0.200P@Fe _X O _Y	11.30	2.48	1.00	
$^{0.200}$ P@Fe _X O _Y (pH = 11.5)	3.97	1.18	-	
OA@ Fe _X O _Y	9.09	1.71	-	
$OA@ Fe_XO_Y (pH = 11.5)$	8.19	1.58	-	

Table S3: CHN values of ${}^{0.200}P@Fe_XO_Y$ before and after base treatment (pH = 11.5).

7. Investigations on phosphonic acid desorption

Figure S22: ¹H and ³¹P NMR spectra of the supernatant solution of ^{0.200}P@Fe_XO_Y (pH = 11.5) in comparison with the free phosphonic acid.

8. NMR, FTIR and DSC data of the homopolymers

Figure S23: ¹H NMR spectra of a) P(DEGMA) and b) P(SMBS).

Figure S24: FTIR spectra of a) P(DEGMA) and b) P(SMBS).

Figure S25: DSC curves of a) P(SMBS) and b) P(DEGMA). T_g determined at $1/2\Delta c_{p.}$

9. DSC and TGA data of P(SS)

Figure S26: DSC curve of polystyrene sulfonate.

Figure S27: TGA of polystyrene sulfonate.

10. TGA and DSC data of the synthesized composite materials

Figure S 28: Thermogravimetric analysis of the synthesized composites. a) ¹⁰Pol, b) ⁸Pol, c) ⁵Pol and d) ³Pol based systems.

Figure S 29: DSC of the synthesized composites. a) ¹⁰Pol, b) ⁸Pol, c) ⁵Pol and d) ³Pol based

systems.

11. Control experiments for the field induced healing experiments

Figure S30: Control heating studies for ³Pol in alternating magnetic fields. Frequency: 313 kHz, percentage values refer to the applied part of the total generator power of 5000 W for the respective heating segment.

Figure S31: Microscope images of the a) untreated sample ³Pol, b) cut sample, healed sample after c) 24 h and d) 48 h in the induction furnace at a generator power of 4500 W and 313 kHz.