Supplementary Information

MC₂ (M = Y, Zr, Nb, and Mo) Monolayers Containing C₂ Dimers:

Prediction of Anode Materials for High-performance Sodium Ion Batteries

Zhanzhe Xu¹, Xiaodong Lv^{2,3,4}*, Wenyue Gu¹, Fengyu Li^{1,*}

¹ School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China

² CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

³ Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

⁴ Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China.

*Corresponding authors: lvxiaodong@nimte.ac.cn (XL); fengyuli@imu.edu.cn (FL)

Fig. S1 Lattice constants (a, b) of the MC₂ (M = Y, Zr, Nb and Mo) monolayers.

Fig. S2 Bonds length of C–C (a), M–C in the (b) (c) and thickness (*d*) for the MC₂ (M = Y, Zr, Nb and Mo) monolayers.

Fig. S3 Bonds length of M–C along the *x* (*y*)-direction and bond angel ($\Box \Box_{C-M-C}$) for the MC₂ (a) YC₂; (b) ZrC₂; (c) NbC₂ and (d) MoC₂ monolayers.

Fig. S4 The calculated phonon spectra of the YC_2 (a), ZrC_2 (b), NbC_2 (c), and MoC_2 (d) monolayers.

Fig. S5 The snapshots of the YC_2 (a), ZrC_2 (b), NbC_2 (c) and MoC_2 (d) monolayers at the end of 5 ps FPMD simulations at 300 K.

Fig. S6 The electronic localization function (ELF) of the YC_2 (a), ZrC_2 (b), NbC_2 (c) and MoC_2 (d) monolayers. In the ELF maps, the red and blue colors refer to the highest value (1.00) and the lowest value (0.00) of ELF, respectively. Corresponding to the accumulation and depletion of electrons in the two colored regions.

Fig. S7 The partial density of states of the YC_2 (a), ZrC_2 (b), NbC_2 (c), and MoC_2 (d) monolayers. The Fermi energy is set to 0 eV as indicated by the vertical dashed line.

Fig. S8 The partial density of states of Na-adsorbed YC_2 (a), ZrC_2 (b), NbC_2 (c), and MoC_2 (d) monolayers. The Fermi energy is set to 0 eV as indicated by the vertical dashed line.

Fig. S9 The variation of Path-I diffusion lengths of Na on the MC_2 (M = Y, Zr, Nb, and Mo) monolayers with the lattice constants of MC_2 .

Fig. S10 The energy profile (left) and diffusion pathways (right) of Na diffusing on the TiC₂ monolayer.

Fig. S11 The formation energy (E_f) of Na_xYC₂(a), Na_xZrC₂(b), Na_xNbC₂(c), and Na_xMoC₂(d) with respect to MC₂ monolayer and Na bulk *bcc* metal. Data points located on the convex hull represents the stable adsorption without decomposition.

Here, the most stable adsorptions configuration of different Na adsorption concentrations (x) on the MC₂ monolayer, we calculated the based on the following equation:^{S1}

$$E_f(x) = (E_{\text{NaxMC2}} \square E_{\text{MC2}} \square x E_{\text{Na-bulk}})/(x+1)$$
(1)

where E_{MC2} , E_{NaxMC2} , and $E_{Na-bulk}$ are the energy of MC₂ monolayer, the total energy of Na-adsorbed MC₂, and the energy per atom in the bulk Na, respectively. We plotted the convex energy hull, the cure of formation energies of all configurations considered *vs*. the concentrations of Na (*x*) in the intercalated MC₂ systems. Located on the hull with negative formation energies, and thus thermodynamically stable, these data further confirm the stability of Na₂YC₂, Na₃ZrC₂, Na₃NbC₂, and Na₃MoC₂.

Fig. S12 The optimized configurations and the corresponding average adsorption energies of Na for Na_{0.25}NbC₂.

Fig. S13 The optimized configurations and the corresponding average adsorption energies of Na for Na_{0.375}NbC₂.

Fig. S14 The optimized configurations and the corresponding average adsorption energies of Na for $Na_{0.5}NbC_2$.

Fig. S15 The optimized configurations and the average adsorption energies of Na for Na₂NbC₂: the additional 8 Na all adsorb at the A₃ sites more far to the surface ($E_{ave} = -0.324$ eV), the additional 8 Na all adsorb at the A₃ sites with the same height to the surface of the preadsorbed Na at A₁ sites ($E_{ave} = -0.285$ eV), the additional 8 Na all adsorb at the A₃ sites more far to the surface ($E_{ave} = -0.324$ eV), the additional 8 Na all adsorb at the A₃ sites more far to the surface ($E_{ave} = -0.324$ eV), the additional 8 Na all adsorb at the A₃ sites more far to the surface ($E_{ave} = -0.324$ eV), the additional 8 Na all adsorb at the A₁ sites more far to the surface ($E_{ave} = -0.156$ eV), the additional 8 Na all adsorb at the A₄ sites more far to the surface ($E_{ave} = -0.009$ eV), the additional 8 Na all adsorb at the A₂ sites more far to the surface ($E_{ave} = -0.113$ eV).

Fig. S16 The end structures (side view) of the Na-intercalated MC_2 (M = Y, Zr, Nb, and Mo) monolayers through a 5 ps FPMD simulation at 300 K.

Fig. S17 The end structures (side view) of the Na-intercalated MC_2 (M = Y, Zr, Nb, and Mo) monolayers through a 5 ps FPMD simulation at 500 K.

	a (Å)	b (Å)	Lattice variation (%)		Volume variation (%)
YC ₂	11.60	8.56			
Na ₂ YC ₂	11.84	8.10	2.1	-5.3	9.8
ZrC ₂	10.67	7.78			
Na ₃ ZrC ₂	10.73	7.19	0.5	-7.5	0.8
NbC ₂	9.95	7.10			
Na ₃ NbC ₂	9.77	6.70	-1.8	-5.6	6.9
MoC ₂	9.68	6.02			
Na ₃ MoC ₂	9.56	6.18	-1.2	2.6	6.05

Table S1. The calculated lattice constant (a, b, Å), lattice and volume change of MC₂ (M = Y, Zr, Nb, and Mo) nanosheets without and with adsorbed Na atoms.

^{S1} (a) T. Bo, P. F. Liu, J. Xu, J. R. Zhong, Y. B. Chen, O. Eriksson, F. W. Wang and B. T. Wang, *Phys. Chem. Chem. Phys.*, 2018, 20, 22168–22178; (b) T. Bo, P. F. Liu, J. Xu, J. R. Zhong, F. W. Wang and B. T. Wang, *Phys. Chem. Chem. Phys.*, 2019, 21, 5178–5188.