Supplementary information

Yijie Wang, Wenjie Luo, Haojie Li, and Chuanwei Cheng

Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P.R. China.E-mail: cwcheng@tongji.edu.cn

Fig S1 (a) XPS survey of Ru/H-S, N-C, Ru/H-N-C, and H-S, N-C; (b) C 1s and Ru 3d spectra; (c) N 1s spectra

Fig S2 The comparison of LSV curves before and after *iR* correction of Ru/H-S, N-C

Fig S3 CV curves between 0.30 and 0.40 V of (a) Ru/H-S, N-C, (b) Ru/H-N-C, and (c) H-S, N-C

Fig S4 (a) TEM and (b-c) HRTEM images of Ru/H-S, N-C after stability test.

Fig S5 XPS spectra of Ru/H-S, N-C after stability test

Fig. S6 The N_2 adsorption and desorption measurements (a) Ru-S, N-C and Ru/H-S, N-C with different diameters of SiO₂ as templates (b) 50 nm, (c) 227 nm, and (d) 380nm

Procedure	Weight (mg)	Yield (%)
Weighing	127.06	-
Self-assembly & Oil bath	107.02	84.23
Pyrolysis	78.53	73.38
HF etching	6.71	8.54

Table S1. Statistic data of yield after each synthesis procedure of Ru/H-S, N-C

Sample	Element	Wt%
Ru/H-S, N-C	Ru	16.76
	S	2.29
	Ν	1.12
	С	79.83
Ru/H-N-C	Ru	13.12
	Ν	0.43
	С	86.45

Table S2. Element composition of Ru/H-S, N-C and Ru/H-N-C on the basis of TEM-EDS

based catalysts						
Catalysts	Electrolyte	η_{10}	Tafel	loading	Ref.	
		(mV)	slope (mV	(mg cm⁻		
			dec ⁻¹)	²)		
Ru/H-S, N-C	1.0 M KOH	32	24	0.35	This	
					work	
Pt/C	1.0 M KOH	40	42	0.35	This	
					work	
Ru ⁰ /CeO ₂	1.0 M KOH	47	41	0.197	1	
Ru-MoO ₂	1.0 M KOH	29	31	0.285	2	
Cu _{2-x} S@Ru	1.0 M KOH	82	48	0.23	3	
NiO/Ru@Ni	1.0 M KOH	39	75	-	4	
RuP ₂ @NPC	1.0 M KOH	52	69	1.0	5	
S-4	1.0 M KOH	28	31	0.275	6	
Ru ₂ Ni ₂ SNs/C	1.0 M KOH	40	23.4	0.1	7	
Ru@SC-CDs 2:10	1.0 M KOH	29	57	0.42	8	
Ru ₂ P@PNC/CC-9	1.0 M KOH	50	66	1.5	9	
00						
Ni@Ni ₂ P-Ru	1.0 M KOH	41	31	-	10	
HNRs						
SA-Ru-MoS ₂	1.0 M KOH	76	21	0.285	11	
Ru-MoS ₂ /CNT	1.0 M KOH	50	62	1.0	12	
RuS _x /S-GO	1.0 M KOH	58	56	1.0	13	

Table S3. The comp	parison of HER perform	nance between Ru/H-S,	, N-C and other Ru-
	based o	atalvete	

Ru _{0.33} Se @ TNA 1.0) М КОН	57	50	0.2	14
---------------------------------	---------	----	----	-----	----

Sample	Element	Peak Area	Sensitivity	Normalized	Atomic	
			Factor	Area	Ratio	
Before	Ru 3p	16007.3	13.262	1207.0	0.202	
stability test	N 1s	6693.6	1.676	3993.8	0.302	
After	Ru 3p	7693.1	13.262	580.1	0.205	
stability test	N 1s	3190.6	1.676	1903.7	0.303	

Table S4. The calculation of the atomic ratio of Ru 3p to N 1s of Ru/H-S, N-C before and after the stability test.

Reference:

- 1. E. Demir, S. Akbayrak, A. M. Onal and S. Ozkar, *ACS Appl. Mater. Interfaces*, 2018, **10**, 6299-6308.
- 2. P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen, J. Su and Q. Chen, *J. Mater. Chem. A*, 2017, **5**, 5475-5485.
- D. Yoon, J. Lee, B. Seo, B. Kim, H. Baik, S. H. Joo and K. Lee, *Small*, 2017, 13, 1700052.
- 4. C. Zhong, Q. Zhou, S. Li, L. Cao, J. Li, Z. Shen, H. Ma, J. Liu, M. Lu and H. Zhang, *J. Mater. Chem. A*, 2019, **7**, 2344-2350.
- Z. Pu, I. S. Amiinu, Z. Kou, W. Li and S. Mu, Angew. Chem. Int. Ed., 2017, 56, 11559-11564.
- 6. J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang and Q. Chen, *Nat. Commun.*, 2017, **8**, 14969.
- J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong and J. B. Baek, *Nat. Nanotechnol.*, 2017, 12, 441-446.
- 8. Y. Liu, Y. Yang, Z. Peng, Z. Liu, Z. Chen, L. Shang, S. Lu and T. Zhang, *Nano Energy*, 2019, **65**, 104023.
- T. Liu, B. Feng, X. Wu, Y. Niu, W. Hu and C. M. Li, ACS Appl. Energy Mater., 2018, 1, 3143-3150.
- Q. Liu, L. Wang, X. Liu, P. Yu, C. Tian and H. Fu, *Sci. China Mater.*, 2018, 62, 624-632.
- 11. J. Zhang, X. Xu, L. Yang, D. Cheng and D. Cao, *Small Methods*, 2019, **3**, 1900653.
- 12. X. Zhang, F. Zhou, S. Zhang, Y. Liang and R. Wang, Adv. Sci., 2019, 6, 1900090.
- 13. W. Fang, H. Hu, T. Jiang, G. Li and M. Wu, *Carbon*, 2019, 146, 476-485.
- K. Wang, Q. Chen, Y. Hu, W. Wei, S. Wang, Q. Shen and P. Qu, *Small*, 2018, 14, e1802132.