Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2021

1

- Supporting Information -

Flavins Complex Gold Nanoparticles: Chemical Modeling Design, Physico-

Chemical Assessment and Perspectives in Nanomedicine.

Celia Arib^a, Nadia Bouchemal^a, Maria Barile^b, Didier Paleni^c, Nadia Djaker^a,

Nathalie Dupont^a, Jolanda Spadavecchia^{a*}

^a CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Paris 13, Sorbonne Paris Nord,1 rue Chablis 93000 Bobigny, France.

^b Dept. of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro" Via Orabona 470126 - Bari - ITALY

^c BioEVEN start-up, 75 rue de Lourmel 75015 Paris

* Corresponding author: jolanda.spadavecchia@univ-paris13.fr

ADDITIONAL SCHEMES

Scheme S1. Chemical structure of Flavin Adenin Dinucleotide (FAD). Blue rings are associated to site of complexation with gold ions.

ADDITIONAL TABLES-EXPERIMENTAL PART

Table S1: Chemical shifts ${}^{1}H/{}^{13}C$ and T1 (s) values

FAD

position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
¹ H	5,85	4,53	4,49	4,35	4,29	4,26	4,03	3,91	4,34	4,09	7,52	2,36	2,29	7,52	8,28	7,85
¹³ C	86,98	74,69	69,89	83,43	67,52	64,9	71,08	72,3	69,05	67,55	116,29	20,53	18,46	130,14	139,14	139
T1 (¹ H)	1,62										2,07	0,86	0,86	2,07	1,47	2,88

FAD-Au-PEG

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15/ 16
6,02	4,62	4,49	4,36	4,24	4,26	4,09	3,96	4,40	5,05	7,77	2,49	2,40	7,77	8,32 / 8,54
87,65									47,42	116,63			130,27	141,84 /145,15
1,97										1,96	0,90	0,91	1,96	1,33/1,43

ADDITIONAL FIGURES-EXPERIMENTAL PART

Figure S 1 A-B : Typical chromatograms with neutralyzed perchloric extract of free FAD (red line), FAD-AuCl₂-PEG (green line) ;FAD IN PEG AuNPs (GNS FAD) (blue line) **A**) ; Stability of FAD IN PEG-AuNPs before (black line) and after (red line) incubation in Dulbecco modified Eagle's Medium (DMEM) and stored for 72h **B**).

Figure S 2 :¹**H** NMR spectra of the FAD (a) and the complexed PEG/FAD-Au (b). T=300K – Internal reference : DSS (0/0.63/1.76/ 2.90 ppm)

As shown in extension (X), the major change between the FAD spectra (a) and the PEG/FAD-Au spectra (b) is located in the aromatic area peaks (7.55 to 8.3 ppm), suggesting that FAD was complexed to the Au by forming bonds between aromatic protons of the FAD.

Figure S 2 bis: ¹H NMR spectrawith spectral assigments of FAD molecule

Figure S 3 : Monitoring FAD release from 0 h to 72 h at 37°C at pH 7 by UV-VIS (A) and pH 4 (A1); B) monitoring release of FAD IN PEG-AuNPs at pH 7 and pH 4 by Raman spectoscopy (B1).

Experimental DLS and Z potential measurements

					Ma	alverr
ern Instruments Ltd - @ Copyright 20	808					
Sample Details						
Sample Name:	FAD-PEG-A	unps_0505202	21_zeta 1			
SOP Name:	SOP (protoc	ole) Au-NPS.so	op			
General Notes:						
File Name:	FAD-PEG-A	unps_0505202	2 Dispersar	nt Name:	Water	
Record Number:	1		Disper	rsant RI:	1,330	
Date and Time:	lundi 10 mai	2021 12:52:53	3 Viscos	sity (cP):	0,8872	
		Disperse	ant Dielectric C	onstant:	78,5	12
System						
Temperature (°C):	25,0		Ze	ta Runs:	12	
Count Rate (kcps):	236,8	Meas	urement Positio	on (mm):	2,00	
Cell Description:	Clear dispos	able zeta c	Att	enuator:	8	
Results			Mean (mV)	Area	(96)	St Dev (mV)
Zeta Potential (mV)-	-36.7	Poak 1	-36.7	100.0		10.9
Zeta Deviation (mV):	10.9	Peak 2:	0.00	0.0		0.00
Conductivity (mS/cm):	1.26	Peak 3:	0.00	0.0		0.00
Result quality	See result	quality report	-,	07473		
		Zeta Potential (Distribution			
300000T	······					
-		Δ				
월 200000		·····				
100000		\square				
-		1				
01	-100		0	100		200
		Apparent Z	eta Potential (mV)			

7

Size Distribution Report by Intensity

Sample Details Sample Name: FAD-PEG-AuNPs_05052021_SIZE 1 SOP Name: SOP (protocole) Au-NPS-SIZE.sop **General Notes:** File Name: FAD-PEG-Aunps_0505... Dispersant Name: Water Record Number: 1 Dispersant RI: 1,330 Viscosity (cP): 0,8872 Material RI: 0,20 Material Absorbtion: 0,000 Measurement Date and Time: lundi 10 mai 2021 12:45:59 System Duration Used (s): 60 Temperature (°C): 25,0 Count Rate (kcps): 296,1 Measurement Position (mm): 5,50 Cell Description: Clear disposable zeta cell Attenuator: 4 Results Size (d.nm... % Intensity: St Dev (d.n... Z-Average (d.nm): 91,75 114,4 100,0 54,05 Peak 1: Pdl: 0,143 Peak 2: 0,000 0,0 0,000 0,000 Intercept: 0,907 Peak 3: 0,000 0,0 Result quality : Good Size Distribution by Intensity 14 12 Intensity (Percent) 10 8 6 2 0 100000 0.1 10 100 1000 10000 Size (d.nm) Record 1: FAD-PEG-AuNPs_05052021_SIZE 1 Record 3: FAD-PEG-AuNPs_05052021_SIZE 3 Record 2: FAD-PEG-AuNPs_05052021_SIZE 2

TABLES AND FIGURES: Theoretical part

Part B : Theoretical results

Table S-B1 :Main geometrical parameters and chemical descriptors for FAD (gazeous and solvated inwater) ; FAD-PEG1 and FAD-PEG2 (solvated in water)

Chemical descriptors	FAD-PEG2	FAD-PEG1	FAD	FAD
Solvation	implic	Gas phase		
atoms	107	100	84	84
electrons	494	470	408	408
Charge	-2	-2	-2	-2
Spin	singlet	singlet	singlet	singlet
Dipolar moment µ	14,0152	17,6172	31,4391	16,1277
(in Debye)				
HOMO n°	247	235	204	204
LUMO n°	248	236	205	205
HOMOEnergy	-0,24105	-0,24099	-0,23037	-0,16120
(in H)				
LUMOEnergy	-0,11559	-0,11555	-0,11544	0,15387
(in H)				
HOMO Energy	-6,56	-6,56	-6,27	-4,39
(in eV)				
LUMO Energy	-3,15	-3,14	-3,14	4,19
(in eV)				
Gap	3,41	3,41	3,13	8,57
(in eV)				
Average linear polarizability α total (in Bohr ³)	749,17	715,83	623,38	483,44
Electron affinity	0,11559	0,11555	0,11544	0,15387
A =-E(LUMO) (in H)				

lonization Potential	0,24105	0,24099	0,23037	0,16120
I = -E(HOMO)(in H)				
Global Hardness	0,06273	0,06272	0,05746	0,15753
η = (I-A)/2				
Softness S = 1/(2*η)	7,97066	7,97194	8,70095	3,17390
Electronegativity	0,17832	0,17827	0,17290	0,00367
χ= (I+A) /2				
Electrophilicity	3,98938 E-03	3,98651 E-03	3,43596 E-03	4,23209E-06
Index				
ω =χ ²/2η				
Distance	14,164	14,009	13,588	12,418
N(9A) - N(10) (in A)				
dihedral angle	177,26	173,36	146,99	135,51
N(9A) - P(A)-P- N10 (in °)				
Mulliken charge on N(9A) atom (in	-0,587	-0,587	-0,586	-0,578
adenine moiety)				
Mulliken charge				
(next to ribose	1,650	1,650	1,636	1,674
Mulliken charge				
on O (between P(A) and P)	-0,922	-0,922	-0,914	-0,902
Mulliken charge				
on P atom (next to ribityl moiety)	1,686	1,692	1,642	1,685
Mulliken charge on N(10) atom (in flavin moiety)	-0,668	-0,668	-0,668	-0,647

Table S-B2 :Main geometrical parameters and chemical descriptors for FAD; FAD-AuCl2; FAD-Au4andFAD-Au8 (solvated in implicit iefpcmwater)

Chemical descriptors	FAD	FADAuCl2	FAD-Au4	FAD-Au8	
Solvation	ir	nplicit water so	olvation, iefpci	m	
atoms	84	87	88	92	
electrons	408	520	724	1040	
Charge	-2	-1	-2	-2	
Spin	singlet	singlet	singlet	singlet	
Dipolar moment μ	21 /201	22 2701	41 7450	25 7009	
(in Debye)	51,4551	22,2791	41,7435	25,7008	
HOMO n°	204	220	242	280	
LUMO n°	205	221	243	281	
HOMO Energy	-0 23037	-0 23095	-0 15575	-0 17/153	
(in H)	-0,23037	-0,23033	-0,13373	-0,17433	
LUMO Energy	0.11544	0 19224	0 11205	0 11120	
(in H)	-0,11544	-0,18224	-0,11595	0,11125	
HOMO Energy	6.27	6.79	1 21	4 75	
(in eV)	-0,27	-0,28	-4,24	-4,75	
LUMO Energy	2 1 /	4.06	2 10	2 02	
(in eV)	-3,14	-4,90	-5,10	-3,03	
Gap	2 1 2	1 3 2	1 1 /	1 72	
(in eV)	3,13	1,52	1,14	1,72	
Average linear	622.20	704.07	1210.20	45.00.00	
Bohr ³)	023,38	/31,0/	1210,38	1569,88	
Electron affinity					
A =-E(LUMO) (in H)	0,11544	0,18224	0,11395	0,11129	
Ionization Potential	0 22027	0.32005	0.15575	0 17450	
I = -E(HOMO)(in H)	0,23037	0,23095	0,155/5	0,1/453	
Global Hardness	0.05746	0.02425	0.02000	0.02162	
η = (I-A)/2	0,03740	0,02435	0,02090	0,03102	

Softness S = 1/(2*η)	8,70095	20,52967	23,92344	15,81278
Electronegativity χ= (I+A) /2	0,17290	0,20659	0,13485	0,14291
Electrophilicity index ω =χ ²/2η	3,436 E-03	2,079 E-03	7,601 E-04	1,292 E-03
Distance N _{9A} - N ₁₀) (inÅ)	13,588	14,210	12,897	14,431
dihedral angle N _{9A} - P _A P-N ₁₀ (in °)	146,99	167,53	129,56	173,65
Mulliken charge on N _{9A} atom (in adenine moiety)	-0,586	-0,581	-0,569	-0,573
Mulliken charge on P _A atom (next to ribose moiety)	1,636	1,714	1,695	1,703
Mulliken charge on O _c (between P(A) and P)	-0,914	-0,871	-0,883	-0,951
Mulliken charge on P atom (next to ribityl moiety)	1,642	1,738	1,684	1,726
Mulliken charge on N ₁₀ atom (in flavin moiety)	-0,668	-0,667	-0,675	-0,670

No.	Wavelength (nm)	Osc. Strength	Major contribs
1	421	0.0	HOMO->LUMO (100%)
2	418	0.1969	H-2->LUMO (94%)
3	408	0.0	H-1->LUMO (98%)
4	389	0.0	H-3->LUMO (98%)
5	364	0.0	H-4->LUMO (98%)
6	358	0.0032	H-17->LUMO (22%),
			H-12->LUMO (52%),
			H-11->LUMO (14%)

Table S-B3 : Calculated UV-Visible electronic transitions and main assignments for FAD optimizedstructure at the B3LYP/6-311G(d,p) TD-DFT level of theory in implicit iefpcm water.

No.	Wavelength (nm)	Osc. Strength	Major contribs
1	418	0,197	HOMO->LUMO (94%)
2	392	0	H-1->LUMO (99%)
			H-3->LUMO (67%),
3	372	0	H-2->LUMO (25%)
			H-3->LUMO (23%),
4	362	0	H-2->LUMO (73%)
			H-18->LUMO (19%),
			H-14->LUMO (19%),
5	358	0,0037	H-13->LUMO (39%)
			H-5->LUMO (44%),
6	352	0,0001	H-4->LUMO (52%)

Table S-B4: Calculated UV-Visible electronic transitions and main assignments for FAD-PEG1optimized structure at the B3LYP/6-311G(d,p) TD-DFT level of theory in implicit iefpcm water.

Figure SB-1: Graphical representation of HOMO, LUMO and eventually molecular orbitals involved in the more intensive UV-Vis electronic transitions for (a) FAD-PEG1 and (b) FAD computed using HF/6-311G(d,p). For the two systems, the more intensive transitions are relative to the flavin moiety.

No.	Wavelength (nm)	Osc. Strength	Major contribs
1	3169	0	H-1->LUMO (100%)
2	1873	0	H-2->LUMO (99%)
3	1306	0,0003	H-4->LUMO (99%)
4	1172	0	H-3->LUMO (100%)
5	1043	0,0007	H-6->LUMO (91%)

Table SB-5: Calculated electronic transitions and main assignments for FADAuCl2 optimizedstructure at the B3LYP/6-311G(d,p)/LANL2DZ TD-DFT level of theory in implicit iefpcm water.

Figure S-B2: Graphical representation of HOMO, LUMO and eventually molecular orbitals involved in the more intensive UV-Vis electronic transitions for FAD-AuCl2 computed using HF/6-311G(d,p)/LANL2DZ. Surprisingly, flavin moiety is not involved in the transitions. Cl atoms modify the repartition of the energy scheme.

Table S-B6: Calculated UV-Visible electronic transitions and main assignments for FAD-Au4optimized structure at the B3LYP/6-311G(d,p)/LANL2DZ TD-DFT level of theory in implicit iefpcmwater.

No.	Wavelength (nm)	Osc. Strength	Major contribs
1	3011	0,0026	HOMO->LUMO (105%)
2	1367	0,0009	HOMO->L+1 (100%)
3	1082	0,0089	HOMO->L+2 (99%)
4	520	0,0005	H-4->LUMO (91%)
5	514	0,012	H-1->LUMO (85%)
6	486	0,0027	H-5->LUMO (90%)

•

Figure SB-3: Graphical representation of HOMO, LUMO and eventually molecular orbitals involved in the more intensive UV-Vis electronic transitions for FAD-Au4 computed using HF/6-311G(d,p))/LANL2DZ. LUMO is located on flavin moiety, HOMO is centered on gold cluster whereas H-1 and H-5 include gold atoms and phosphate moieties

Table S-B7: Calculated UV-Visible electronic transitions and main assignments for FAD-Au8optimized structure at the B3LYP/6-311G(d,p)/LANL2DZ TD-DFT level of theory in implicit iefpcmwater.

No.	Wavelength (nm)	Osc. Strength	Major contribs
1	857	0,0003	HOMO->LUMO (99%)
2	796	0,002	HOMO->L+1 (95%)
3	766	0,0012	HOMO->L+2 (97%)
			H-1->L+1 (10%),
4	610	0,021	HOMO->L+3 (81%)
5	597	0,0285	HOMO->L+4 (81%)
6	558	0,0004	H-1->LUMO (100%)

Figure S-B4: Graphical representation of HOMO, LUMO and eventually molecular orbitals involved in the more intensive UV-Vis electronic transition for FAD-Au8 computed using HF/6-311G(d,p))/LANL2DZ. Most of them; excluding the LUMO that is located on the flavin moiety, are located on the gold cluster.