Electronic Supplementary Information (ESI) for Chemical Communications. This journal is (c) The Royal Society of Chemistry 2021.

### **Electronic Supplementary Information (ESI)**

# A Novel Rose-With-Thorn Ternary MoS<sub>2</sub>@Carbon@Polyaniline Nanocomposite as Rechargeable Magnesium Battery Cathode Displaying Stable Capacity and Low-Temperature Performance

Jinyun Liu,<sup>\*,a,1</sup> Yan Zhong,<sup>a,1</sup> Xuelian Li,<sup>a</sup> Tongxin Ying,<sup>a</sup> Tianli Han,<sup>\*,a</sup> Jinjin Li<sup>\*,b</sup>

# **EXPERIMENTAL SECTION**

# Synthesis of rose-like MoS<sub>2</sub>

The rose-like MoS<sub>2</sub> was synthesized through a typical hydrothermal method. Typically, 1.24 g ammonium molybdate and 0.75 g thioacetamide were dissolved in 40 mL deionized water under stirring. The solution was stirred for 30 min, then transferred into a Teflon-lined stainless-steel autoclave, which was heated in an oven at 190 °C for 12 h. The samples were obtained by centrifugation, washed with deionized water and ethanol alternately four times, and dried at 60 °C.

#### Preparation of MoS<sub>2</sub>@C@PANI composite

First, a layer of carbon was coated on the surface of MoS<sub>2</sub>. 0.2 g MoS<sub>2</sub> was dispersed in 50 mL deionized water. After 1 min of ultrasonication, 1.121 g (hydroxymethyl) methyl aminomethane was added under stirring. The pH was adjusted to 8.5 by adding 8 drops of hydrochloric acid. Next, 0.075 g dopamine hydrochloride was put into the solution, which was stirred for 24 h. The sample was washed with deionized water and dried at 60 °C. It was annealed at 600 °C for 4 h in nitrogen atmosphere. After that, 0.1 g of the sample was added into 60 mL of 0.5 M H<sub>2</sub>SO<sub>4</sub>. Then, 0.455 mL aniline was added under stirring. 0.575 g ammonium persulfate was dissolved in 40 mL of 0.5 M H<sub>2</sub>SO<sub>4</sub> drop by drop under stirring for 12 h in an ice bath. At last, the sample was collected and washed.

## Characterization

The morphology and composition were investigated on a scanning electron microscopy (SEM, Hitachi S-8100, operated at 5 kV), a transmission electron microscopy (TEM, Hitachi HT7700), and a high-resolution TEM (HRTEM, Tecnai G2 20 S-TWIN, FEI). X-ray diffraction (Bruker D8 Advance) and X-ray photoelectron spectroscopy (XPS, ESCALAB 250) were used to measure phase and composition. The element mapping was performed on an energy dispersive X-ray spectrometer (EDS) analyzer. The composition was measured by thermogravimetric analysis (TGA, Setaram Labsys Evo SDT Q600). The Raman spectrum was measured on a spectroscopic method (Renishaw in Via). Fourier transform infrared spectroscopy (FTIR) was determined by G/FTIR-8400S (PerkinElmer).

#### **Electrochemical tests**

The electrochemical performance was evaluated through a coin-typed cell system. A

slurry was prepared by samples (80 wt%), carbon black (10 wt%) and polyvinylidene fluoride (10 wt%). The slurry was coated uniformly on carbon paper with a diameter of 14 mm and a thickness of 0.015 mm, dried in a vacuum oven at 60 °C for 12 h. The 0.4 M (PhMgCl)<sub>2</sub>-AlCl<sub>3</sub>/THF was used as electrolyte. Cells were assembled in a glove box (Mikrouna, Super 1220/750/900) filled with Ar gas. The AZ31 Mg alloy was used as reference electrode in our study, which was purchased with a high purity. The material loading and the electrolyte/sulfur ratio were about 1.45 mg cm<sup>-2</sup> and 15  $\mu$ L mg<sup>-1</sup>. The charge-discharge and rate-performance were tested in a potential window of 0.01-2 V on Neware CT-3008. Cyclic voltammetry (CV) curves and electrochemical impedance spectroscopy (EIS) spectra were recorded on the same electrochemical workstation (CHI-660E).



Fig. S1 Cycling performance of the MoS<sub>2</sub>@C@PANI cathode at  $0.1 \text{ A g}^{-1}$  under -10 °C.

| Material                                           | Preparation approach               | Rate          | Cycle  | Capacity               | Ref.          |
|----------------------------------------------------|------------------------------------|---------------|--------|------------------------|---------------|
|                                                    |                                    | $(mA g^{-1})$ | number | (mAh g <sup>-1</sup> ) |               |
| MnO <sub>2</sub> /MXene-V <sub>2</sub> C           | Etching method                     | 100           | 100    | 76.7                   | 1             |
| CuS                                                | Self-doping strategy               | 1000          | 550    | 72.5                   | 2             |
| MgFe <sub>x</sub> Mn <sub>2-x</sub> O <sub>4</sub> | Spinel-type metal                  | 1000          | 1000   | 88.3                   | 3             |
| Ni-doped<br>magnesium<br>manganese oxide           | Hydrothermal method                | 100           | 100    | 107                    | 4             |
| MgMn1.8Sr0.2O                                      | Self-propagating combustion method | 100           | 10     | 59                     | 5             |
| SnO2-rGO                                           | Self-assembly reaction             | 100           | 150    | 102                    | 6             |
| MoS2@C@PANI                                        | Hydrothermal reaction              | 100           | 100    | 114                    | This<br>study |

Table S1. Comparison on the performance of some nanocomposite-based cathodes.

# References

- 1. Li, Y.; Xu, D.; Zhang, D.; Wei, Y.; Zhang, R.;Guo, Y., RSC Adv. 2019, 9, 33572-33577.
- Du, C.; Zhu, Y.; Wang, Z.; Wang, L.; Younas, W.; Ma, X.;Cao, C., ACS Appl. Mater. Interfaces 2020, 12, 35035-35042.
- Zhang, Y.; Liu, G.; Zhang, C.; Chi, Q.; Zhang, T.; Feng, Y.; Zhu, K.; Zhang, Y.; Chen,
  Q.; Cao, D., *Chem. Eng. J.* 2020, *392*, 123652.

- 4. Zhang, H.; Cao, D.; Bai, X., Inorg. Chem. Front. 2020, 7, 2168-2177.
- Harudin, N.; Osman, Z.; Majid, S. R.; Othman, L.; Hambali, D.; Silva, M. M., *Ionics* 2020, 26, 3947-3958.
- 6. Asif, M.; Rashad, M.; Shah, J. H.; Zaidi, S. D. A., *J. Colloid Interface Sci.* **2020**, *561*, 818-828