Supporting Information for

Open-ended W18O49-filled Tungsten Dichalcogenides Nanotubes Grown

on W Substrate to Efficiently Catalyze Hydrogen Evolution

Yubao Li,* Wei Zhang,* Tianqi Wang, Yating Cao, Cuncai Lv and Kai Zhang

College of Physics Science and Technology, Hebei University, Baoding 071002, China

*Corresponding authors. E-mail: liyubao@hbu.edu.cn; zhangw@hbu.edu.cn

Supplementary Figures

Fig. S1 (a) Photos of WSe₂-based one-dimensional nanostructure films grown on 2 cm-sized W substrate (left)/Si substrate (mid), or 2-inch Si wafer (right), **(b)** SEM image of WSe₂-based one-dimensional nanostructure films grown on a W substrate, **(c)** Raman spectrum of WSe₂-based one-dimensional nanostructured film.

Fig. S2 HRTEM images of WSe2 uncapped nanotubes (scale bars: 10 nm)

Fig. S3 (a) EDX spectrum of WS_2 -based nanostructure film, **(b)** EDS elemental mappings of a WOx-filled WS_2 nanotube (scale bars: 100 nm), **(c)** TEM image of a WOx-filled WS_2 nanotube capped at top-end and its corresponding HRTEM images taken on 3 different sections highlighted in blue/green/red frames (scale bars: 5 nm), **(d)** HRTEM images of WOx-filled WS_2 capped nanotubes (scale bars: 10 nm).

Fig. S4 (a) Schematic drawings of aligned WSe_2 uncapped nanotube working electrode (Left) and aligned WS_2 uncapped nanotube working electrode (Right), (b) LSV curves at low-currents for different working electrodes.

Fig. S5 (a) SEM image of aligned $W_{18}O_{49}$ nanowires grown on W substrate, (b) TEM images of $W_{18}O_{49}$ nanowires, (c) and (d) SEM image and corresponding I-V plot of a two-terminal $W_{18}O_{49}$ nanowire device.

TMDs nanostructured catalyst	Туре	η10	Tafel slope	J ₀ @ 0 V	Refs
		(mV)	(mV/dec)	(mA/cm ²)	
uncapped WS ₂ nanotube arrays/W substrate	thin film	156	85	0.20	This work
nanoporous MoS ₂ /FTO substrate	thin film	230	50	NA	12
nanoporous MoS_2 /Mo substrate	thin film	280	50	NA	13
WS ₂ /WO ₃ nanohelixes arrays/W substrate	thin film	168	NA	NA	14
MoS ₂ -MoO ₃ nanocables/FTO substrate	thin film	240	50-60	NA	16
WSSe nanotubes/carbon fiber	thin film	~270	105	0.029	20
WS2 nanosheets/glassy-carbon	powder	NA	55	0.02	8
WS ₂ nanosheets/rGO	powder	~270	58	NA	9
single-layer MoSSe nanodots	powder	140	40	NA	10
WS ₂ nanosheets/mesoporous graphene	powder	117-142	56-60	NA	11
WS ₂ nanoribbons	powder	225	68	0.01	26

Table S1. Comparison between various TMDs-derived nanocatalysts for HER in 0.5M HSO4 electrolytes

Fig. S6 LSV curves of WSe2-capped-nanotubes thin film catalyst grown on Si/W substrates

Fig. S7 SEM images of W-supported WS2 uncapped nanotubes after electrochemical stability testing

Fig. S8 (a) SEM image of the film after wet etching in diluted HF etchant, (b) EDS spectrum of remaining onedimensional nanostructures, (c) GI-XRD spectrum of one-dimensional nanostructures, (d) TEM image of WS_2 nanotubes, (e) HRTEM images of WS_2 nanotubes (scale bars: 5 nm)

To get pure WS_2 nanotubes by removing tungsten sub-oxide cores, as-grown WOx-filled WS_2 nanotube film was etched in 3% HF aqueous solution for 24 hours, and subsequently rinsed in deionized water for several times before final blow dry with N_2 gas. One-dimensional nanostructures still remained in approximately vertical alignment after etch (Fig. S8a). As shown in Fig. S8b, very little trace of O element was detected by EDS. XRD spectrum shown in Fig. S8c demonstrated that the film was composed of pure 2H-WS₂ phase, indicating the sub-oxide cores were completely removed. Further TEM characterizations verified the formation of pure WS_2 nanotubes, as seen from the low-magnification TEM image in Fig. S8d. HRTEM images of some individual WS_2 nanotubes are displayed in Fig. S8e, showing their characteristics of broken outmost layer or open-ends.