Electronic Supplementary Information

Ultrasensitive two-dimensional material-based MCF-7 cancer cell sensor driven by perturbation processes

Sophia S. Y. Chan,¹ Denise Lee,¹ Maria Prisca Meivita,¹ Lunna Li,¹ Yaw Sing Tan,² Natasa Bajalovic,¹ Desmond K. Loke^{1, 3}

¹Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore

²Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore

³Office of Innovation, Changi General Hospital, Singapore 529889, Singapore

Figure S1. Computational analysis of MoS_2 and cancer lipid bilayer system. (a) Plot of atom count (black) and van der Waal (vdW) interaction energy (red, kJmol⁻¹) and (b) center of mass (CoM) distance (nm) plotted as a function of time (ns) for the interaction between MoS_2 nanosheet and cancer lipid bilayer system.

Figure S2. Normalised resistance for control (cells only, 3×10^3 cells) and MCF-7 cells at varying cell populations ($n = 4 \times 10^3$ cells and 5×10^3 cells). Data represents mean \pm SEM, (n = 6 from 3 independent experiments). Significance was calculated using a Student's t-test: non-significant (ns).

Figure S3. Normalised resistance for MCF-7 media only and MCF-7 media with 75 μ M of MoS₂ (Media/MS). Data represents mean \pm SEM, (*n* = 3). Significance was calculated using a Student's t-test: *p* < 0.05 (*)

Table S1 Significance for MCF-7 cytotoxicity for different concentrations of MoS₂ compared to control, different concentrations of MoS₂ and different incubation times. Significance was calculated using a Student's t-test: p < 0.05 (*), p < 0.01 (***), p < 0.001 (***).

		Concentrations (µM)			
		25	50	75	100
MCF-7 (<i>t</i> = 24 h)	Compared to Control			*	***
	Compared to 25 μ M			*	**
	Compared to 50 μ M				**
	Compared to 75 μ M				*
MCF-7 (<i>t</i> = 48 h)	Compared to $t = 24$ h				
	Compared to Control				*
	Compared to 25 μ M				
	Compared to 50 μ M				*
	Compared to 75 μ M				*

Table S2 Force field parameters for MoS_2 ,¹ where σ is the finite distance (where interparticle potential is zero), ε is the Lennard-Jones parameter referring to the depth of the potential well and *e* is the partial atomic charge.

Atom	σ/Å	ε /kJmol ⁻¹	е
Мо	2.55	0.543	-0.76
S	3.50	1.045	-0.38

Table S3 Lipid composition for the inner and outer leaflet of cancer lipid bilayer systems based

 on lipids built by Klähn & Zacharias.²

	Inner Leaflet		Outer Leaflet	
	DOPC	DOPS	DOPC	DOPS
Cancer	91	30	99	22

Table S4 Full references for Fig. 3d. State-of-the-art electrical-based biosensors detecting an adherent monolayer of cells.

Ref No.	Reference
1	Yea, C. H., Jeong, H. C., Moon, S. H., Lee, M. O., Kim, K. J., Choi, J. W., Cha, H. J., In situ label-free quantification of human pluripotent stem cells with electrochemical potential. <i>Biomaterials</i> 75 , 250–259 (2016).
2	Jeong, H. C., Choo, S. S., Kim, K. T., Hong, K. S., Moon, S. H., Cha, H., J., Kim, T. H., Conductive hybrid matrigel layer to enhance electrochemical signals of human embryonic stem cells. <i>Sensors Actuators, B Chem.</i> 242 , 224–230 (2017).
3	Suhito, I. R., Kang, W. S., Kim, D. S., Baek, S., Park, S. J., Moon, S. H., Luo, Z., Lee, D., Min, J., Kim, T. H., High density gold nanostructure composites for precise electrochemical detection of human embryonic stem cells in cell mixture. <i>Colloids Surfaces B Biointerfaces</i> 180 , 384–392 (2019).
4	Angeline, N., Choo, S. S., Kim, C. H., Bhang, S. H. & Kim, T. H. Precise Electrical Detection of Curcumin Cytotoxicity in Human Liver Cancer Cells. <i>Biochip J.</i> 15 , 52–60 (2021).

References

- 1 B. Luan and R. Zhou, *Appl. Phys. Lett.*, DOI:10.1063/1.4944840.
- 2 M. Klähn and M. Zacharias, *Phys. Chem. Chem. Phys.*, 2013, **15**, 14427–14441.