Amino Acid-Based Supramolecular Nanozyme by Coordination Self-Assembly for Cascade Catalysis and Enhanced Chemodynamic Therapy towards Biomedical Applications

Enhui Song,‡^a Yongxin Li,‡^{*a} Lili Chen,^a Xiaopeng Lan,^{*a} Changshun Hou,^{*b} Chunlei Liu,^a and Chunzhao Liu^{*a}

^aState Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, Affiliated Qingdao Central Hospital, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.

^bDepartment of biomedical science, City University of Hong Kong, Hong Kong 999077. P. R. China.

Fig. S1 The change on absorption of MB after treatment of Fmoc-L/Fe nanoparticles in the presence of H_2O_2 compared with nanoparticles or H_2O_2 alone.

Fig. S2 TEM image of Fmoc-L/Fe/GOx nanoparticles.

Fig. S3 The change on absorption of MB after treatment of Fmoc-L/Fe/GOx nanoparticles in the presence of glucose.

Fig. S4 The cell viability of MCF-7 cells after treatment with different concentration of H₂O₂.

Fig. S5 The changes in the size and polymer dispersity index (PDI) of Fmoc-L/Fe nanoparticles (a) and Fmoc-L/Fe/GOx nanoparticles (b) after 10-fold (v/v) dilutions in water. The changes in the size and PDI of Fmoc-L/Fe nanoparticles (c) and Fmoc-L/Fe/GOx (d) nanoparticles in PBS. The changes in the size and PDI of Fmoc-L/Fe nanoparticles (e) and Fmoc-L/Fe/GOx nanoparticles (f) in DMEM with 10% fetal bovine serum (FBS) at 37 °C.