Supporting Information

Formaldehyde Gas Sensor with Extremely High Response Employing Cobalt-Doped SnO$_2$ Ultrafine Nanoparticles

Shiqiang Zhou$^{a, b}$, Huapeng Wanga, Jicu Hua, Tianping Lva, Qian Ronga, Yumin Zhanga, Baoye Zia, Mingpeng Chenc, Dongming Zhanga, Jun Weib, Jin Zhang$^{a, *}$ and Qingju Liu$^{a, *}$

a Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.

b Shenzhen Key Laboratory of Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen, University Town, Shenzhen, 518055, China.

c Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, China

* Corresponding E-mail: qjliu@ynu.edu.cn

§ These authors contributed equally to this work.
Figure S1 The actual picture of the test device and gas sensor.
Figure S2 The Raman spectra of SnO$_2$ NPs, 0.5%Co-SnO$_2$ NPs, 1%Co-SnO$_2$ NPs, 2%Co-SnO$_2$ NPs.
Figure S3 The response transient curves of the (a) 1%Co-SnO$_2$ NPs, (b) 2%Co-SnO$_2$ NPs, (c) SnO$_2$ NPs at 90°C and different formaldehyde concentration.
Figure S4 (a) The change curves of resistance R_a of samples in air with temperature, (b) the resistance change curves of the samples with 30 ppm formaldehyde at 90°C.
The sensor noise (RMS_{noise}) is usually calculated from the standard deviation of the sensor baseline. From figure 6 (b), 270 points were collected before the sensor was placed on the target gas, and the calculated standard deviation (S) was 0.0128.

$$RMS_{\text{noise}} = \sqrt{\frac{S^2}{N}}$$ \hspace{1cm} (S1)

where N is the number of data points. The value of RMS_{noise} is 0.00078. The ratio of signal (S) to noise (N) (S/N) is 3 (International Union of Pure and Applied Chemistry (IUPAC) definition) and the slope is 4259.0 (From figure 9 (b)), therefore:

$$LOD = \frac{RMS_{\text{noise}}}{\text{Slope}} = 3 \times \frac{0.00078}{4259} = 0.00000055 \text{ ppb}$$ \hspace{1cm} (S2)

in this work, the theoretical detection limit of formaldehyde was estimated to be about 5.5×10^{-7} ppb.

Calcualtion of the Debye lengths of SnO$_2$

$$\lambda_D = \sqrt{\frac{\varepsilon k_B T}{q^2 N_0}}$$ \hspace{1cm} (S3)

$\varepsilon_{\text{SnO}_2} = 13.5 \times 8.85 \times 10^{-12} \text{ Fm}^{-1}$

$k_B = 1.38 \times 10^{23} \text{ JK}^{-1}$

$T = 363 \text{ K}$

$q = 1.6 \times 10^{-19} \text{ C}$

$N_{\text{SnO}_2} = 3.6 \times 10^{18} \text{ cm}^{-3}$

$\lambda_{\text{SnO}_2} = 2.55 \text{ nm}$