Supplementary Data of MnAl₂O₄·ZnAl₂O₄:

Figure S1: SEM-EDS mapping of the MnAl₂O₄·ZnAl₂O₄ nanomaterial film surface

Element	(keV)	Mass (%)	Sigma	Atom (%)
O K	0.525	22.75	0.08	47.4
Al K	1.486	16.45	0.07	20.32
Mn K	5.894	13.07	0.1	7.93
Zn K	8.63	47.73	0.33	24.34
Total		100		100

Figure S2: Tapping mode AFM of MnAl₂O₄·ZnAl₂O₄ nanomaterial in glass surface

Figure S3: Height profile of the MnAl₂O₄·ZnAl₂O₄ nanomaterial film surface

Figure S4: FTIR spectra of MnAl₂O₄·ZnAl₂O₄ nanoparticles

Figure S5: PL spectra of MnAl₂O₄·ZnAl₂O₄ nanomaterial at differing excitation energy

Figure S6: PLE spectra of $MnAl_2O_4$ ·ZnAl_2O₄ nanomaterial

Figure S7: PL spectra of MnAl₂O₄ nanomaterial at differing excitation energy

Figure S8: PL spectra of MnO·ZnO nanomaterial at differing excitation energy

Figure S9: PL spectra of ZnAl₂O₄ nanomaterial at differing excitation energy

Figure S10: PL spectra of Al₂O₃ nanomaterial at differing excitation energy

Figure S11: PL spectra of MnO nanomaterial at differing excitation energy

Figure S12: PL spectra of ZnO nanomaterial at differing excitation energy

Figure S13. Methyl violet 6b (MV) dye degradation schemes by mass spectrometry. (Adapted in modified form with permission from Favaro G, Confortin D, Pastore P and Brustolon M,

Application of LC-MS and LC-MS-MS to the analysis of photo-decomposed crystal violet in the investigation of cultural heritage materials aging, J. Mass Spectrom. 2012, 47, 1660–1670.)

Name of the sample	Excitation Wavelength (nm)	Peaks Wavelength (nm)
	230	371 and 469
$MnAl_2O_4{\cdot}ZnAl_2O_4$	350	405, 428 and 450
	PLE at 450	352, 368 and 388
MnALO.	230	371, 402, 427 and 451
WIIA1204	350	403, 427 and 450
MnQ+7nQ	230	369, 469 and 489
	350	434, 458 and 483
	230	367 and 468
ZnAlaOr	330	378
2m u ₂ 04	350	389, 405 and 426
	400	453
AlaOa	230	370 and 468
111203	350	389 and 427
 MnO	230	369, 402, 425 and 451
	350	402, 425 and 451
ZnO	230	387, 422, 467 and 482
	350	405, 428 and 450

Table S2: PL and PLE spectra data accumulation of synthesized nanomaterial