Supporting Information

Regulation of photo triggered cytotoxicity in electrospun nanomaterials: role of photosensitizer binding mode and polymer identity

Anzhela Galstyan,* Husaaini Majiya, and Ulrich Dobrindt

Inhalt

1.	Synt	hesis	2
	1.1	Synthesis of SymPc	2
	1.2	Synthesis of Pc3	2
	1.3	Synthesis of AsymPc	2
2.	Pho	tophysical characterization	3
	2.1	Absorption spectra	3
	2.2	Singlet oxygen quantum yields	4
	2.3	Evaluation of photosensitizers concentration in nanofibers	5
	2.4	Structural characterization of bair PVA, PAN and PCL nanofibers	5
3.	Pho	tobiological Studies	6
	3.1	Viability of bacteria treated with SymPc and AsymPc	6
	3.2	Determination of the viability of bacteria adhered to nanofibers	7
	3.3	Viability of bacteriophages treated with SymPc and AsymPc	8
4.	FT-II	R and Mass Spectra	9

1. Synthesis

Scheme S1. *Synthetic pathway towards SymPc and AsymPc.*

Pc1 and **Pc2** were synthesized as described previously.¹

1.1 Synthesis of SymPc

Pc1 (53.5 mg, 0.05 mmol, 1.00 eq.) was dissolved in DMF (ca 1 mL) and MeI was added in excess. The reaction was stirred at 50°C overnight (18h). DCM (200 mL) was added and stirred for 1 h at room temperature. The green solid was collected. Molecular Formula: $C_{56}H_{40}N_{12}S_4Zn$ Yield: 57.6 mg, 0.05 mmol, 100% FT-MS (CH₃CN/H₂O):[M]⁴⁺: calc.: m/z = 268.04128, found: m/z = 268.04120; [M+I]³⁺: calc.: m/z = 399.69005, found: m/z = 399.69008; [M+2I]²⁺: calc.: m/z = 662.98758, found: m/z = 662.98808. ¹H-NMR (DMSO-d6, 400 MHz, 300 K): 9.42-7.60 (m, 28 H, H-aromatic), 5.03-4.33 (m, 12 H).

1.2 Synthesis of Pc3

Pc2 (57.5 mg, 0.05 mmol, 1.00 eq.) and succinic anhydride (8.3 mg, 0.08 mmol, 1.60 eq.) were dissolved in DMF (10 mL) and heated to 50 °C. Molecular Formula: $C_{59}H_{45}N_{11}O_8S_3Zn$ 30 Yield: 60.0 mg, 0.05 mmol, 100% MALDI-TOF-MS (DCTB-CHCl₃):[M]: calc.: m/z = 1096.19, found: m/z = 1196.06.

1.3 Synthesis of AsymPc

Pc3 (57.1 mg, 0.05 mmol, 1.00 eq.) was dissolved in DMF (as little as possible) and MeI was added in excess. The reaction was stirred at 50 \circ C over night (18h). DCM (200 mL) was added and stirred for 1 h at room temperature. The green solid was collected. Molecular Formula: C₆₂H₅₄N₁₁O₈S₃Zn Yield: 57.6 mg, 0.05 mmol, 100% FT-MS (CH₃CN/H₂O):

¹Galstyan, A.; Riehemann, K.; Schä Fers Acd, M.; Faust, A.; Schäfers, M.; Faust, A. A Combined Experimental and Computational Study of the Substituent Effect on the Photodynamic Efficacy of Amphiphilic Zn(II)Phthalocyanines. *J. Mater. Chem. B* **2016**, *4* (4), 5683–5691..

 $[M+I]^{3+}$: calc.: m/z = 380.08112, found: m/z = 380.08110; $[M+2I]^{2+}$: calc.: m/z = 633.57418, found: m/z = 633.57456; $[M+3I]^+$: calc.: m/z = 1394.05339, found: m/z = 1394.05440. ¹H-NMR (DMSO-d6 d6, 400 MHz, 300 K): δ (ppm) = 9.57-6.96 (m, 24 H, H-aromatic), 5.29-3.34 (m, 32 H, H-aliphatic).

2. Photophysical characterization

2.1 Absorption spectra

Figure S1. UV-Vis absorption spectra of different SymPc concentrations (a) in DMF and (b) in H_2O and corresponding linear fits of absorption maxima.

Figure S2. UV-Vis absorption spectra of different AsymPc concentrations (a) in DMF and (b) in H_2O and corresponding linear fits of absorption maxima.

2.2 Singlet oxygen quantum yields

Figure S3. Time-dependent decomposition of DPBF photosensitized by SymPc, AsymPc and unsubstituted ZnPc as reference in DMF upon irradiation with light from projector lamp filtered through a cut-off filter for $\lambda > 610$ nm and corresponding first-order plots.

Figure S4. Changes in the emission spectra of DCFDA photosensitized by SymPc, AsymPc and unsubstituted ZnPc as reference in H_2O upon irradiation with light from projector lamp filtered through a cut-off filter for $\lambda > 610$ nm and corresponding first-order plots.

2.3 Evaluation of photosensitizers concentration in nanofibers

UV-Vis spectroscopy was used to determine the PS loading. To obtain a constant area of approximately 113 cm², samples were randomly cut from the mat at different locations using a 12 cm diameter hole punch. The samples were washed with 70% ethanol solution (1 x 1 mL) and water (3 x 1 mL) to remove unbound PS and then heated at 100°C for 1 h in a 1 mL DMF-H₂O 1:1 mixture in case of PVA-based NFs and in DMF for PAN and PCL based NFs.

Figure S5. a) Calibration curves for spectrophotometric UV-vis determination of PS concentration and absorbances of PSs found NFs after washing with 70% EtOH and H_2O , *b)* Release of PS from NFs in H_2O .

2.4 Structural characterization of bair PVA, PAN and PCL nanofibers

Figure S6. SEM images and fiber size distribution of bair PVA, PAN and PCL photosensitizers concentration in nanofibers.

3. Photobiological Studies

3.1 Viability of bacteria treated with SymPc and AsymPc

Figure S7. Viability of B. subtilis DB104 and E. coli Nissle 1917 treated with corresponding amount of SymPc or AsymPc for15 min in dark and irradiation with total light dose of 9 J/cm².

3.2 Determination of the viability of bacteria adhered to nanofibers

Figure S8. Viability of B. subtilis DB104 and E. coli Nissle 1917 attached to the NFs (incubation 1h in dark) determined using CFU counting and XTT assay.

Figure S9. Viability of phi6 and MS2 treated with corresponding amount of SymPc or AsymPc for15 min in dark and irradiation with total light dose of 6 J/cm^2.

FT-IR and Mass Spectra 4.

Wavenumber cm¹ Figure S10. FT-IR spectra of PVA (a), SymPc PVA (b), SymPc+SA PVA (c), AsymPc PVA (d) and AsymPc+SA PVA (e).

Figure S13. Mass spectra of SymPc.

Figure S14. Mass spectra of Pc3.

Figure S15. Mass spectra of AsymPc.