Electronic supplementary information

PEGylation of silver nanoparticles by physisorption of cyclic poly(ethylene glycol) for enhanced dispersion stability, antimicrobial activity, and cytotoxicity

Oziri Onyinyechukwu J.,^a Yubo Wang,^a Tomohisa Watanabe,^a Shuya Uno,^a Masatoshi Maeki,^b Manabu Tokeshi,^b Takuya Isono,^b Kenji Tajima,^b Toshifumi Satoh,^b Shin-ichiro Sato,^b Yutaka Miura,^c and Takuya Yamamoto^{*b}

^aGraduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628, Japan.

^bDivision of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060– 8628, Japan. E-mail: yamamoto.t@eng.hokudai.ac.jp

^cLaboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226–8503, Japan.

Fig. S1 SEC traces of HO–PEG–OH (blue), MeO–PEG–OMe (green) and *c*-PEG (red) with a molecular weight of (a) 2, (b) 3, and (c) 9 kDa.

Fig. S2 ¹³C NMR spectra of HO–PEG–OH (blue), MeO–PEG–OMe (green), and *c*-PEG (red) with a molecular weight of (a) 2, (b) 3, and (c) 9 kDa.

Fig. S3 ¹H NMR spectra of HO–PEG–OH (blue), MeO–PEG–OMe (green), and *c*-PEG (red) with a molecular weight of (a) 2, (b) 3, and (c) 9 kDa.

Fig. S4 MALDI-TOF mass spectra of HO–PEG–OH (blue) and *c*-PEG (red) with a molecular weight of (a) 2 and (b) 3kDa.

Fig. S5 UV–Vis spectra of HO–PEG_{9k}–OH (blue), MeO–PEG_{9k}–OMe (green), HS–PEG_{9k}–OMe (yellow), and *c*-PEG_{9k} (red).

Fig. S6 Stability test of AgNPs/PEG against CaCl₂. UV–Vis spectra and photographs of AgNPs₁₀/No PEG (black), AgNPs₁₀/HO–PEG_{9k}–OH (blue), AgNPs₁₀/MeO–PEG_{9k}–OMe (green), AgNPs₁₀/HS–PEG_{9k}–OMe (yellow/orange), and AgNPs₁₀/*c*-PEG_{9k} (red) with a PEG concentration of 0.25 wt% (a) before (b) immediately after and (c) 1000 min after the addition of a concentrated CaCl₂ solution. The resulting dispersions had 10 mM of CaCl₂.

Fig. S7 Stability test of commercial AgNPs₈₀/HS–PEG_{5k}–OMe against heating. UV–Vis spectra of AgNPs₈₀/HS–PEG_{5k}–OMe (a) before heating and (b) after heating at 95 °C for 4 h. Photographs of AgNPs₈₀/HS–PEG_{5k}–OMe (c) before heating and (d) after heating at 95 °C for 4 h.

Fig. S8 Cell viability for AgNPs₁₀/No PEG, AgNPs₁₀/HO–PEG_{9k}–OH, AgNPs₁₀/MeO–PEG_{9k}–OMe, AgNPs₁₀/HS–PEG_{9k}–OMe, and AgNPs₁₀/*c*-PEG_{9k}. Data represent mean \pm s.e. from measurements of six wells. **p* < 0.05.

Fig. S9 Scratch assay test for AgNPs₁₀/No PEG, AgNPs₁₀/HO–PEG_{9k}–OH, AgNPs₁₀/MeO–PEG_{9k}–OMe, AgNPs₁₀/HS–PEG_{9k}–OMe, and AgNPs₁₀/*c*-PEG_{9k}. The pictures were taken at 0 and 22 h after scratching. Migration of the cells into the scratched area was observed in all the specimens except for AgNPs₁₀/*c*-PEG_{9k}. Most of the cells in AgNPs₁₀/*c*-PEG_{9k} were stripped from the plate upon scratching.