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The Supporting Information is organized into two sections:

S1. Further Details on the Modeling Approach,

S2. Full-Wave Simulation of the Geometric Phase Arrays.

S1. Further Discussion on Modeling Procedure

In this section, we outline more details regarding the approach used for modeling the

optomechanical response of large-area metasails and obtain the closed-form expressions for

the optical force components imparted to the metasail. The local optical force imparted

to a group of unit cells across the metasail can be obtained by evaluating the flux of

Maxwell’s stress tensor through a box enclosing the group of unit cells. Given that the

dominant contribution to the force results from the front and back surfaces of the enclosing

box being parallel to the plane of metasail (x − y), the time-averaged local force can be

written as:

〈
−→
dF 〉 =

1

2
Re{n̂i.T em + n̂t.T em}dS (1)
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in which n̂i and n̂t are the surface normal vectors for the illumination side and transmission

side, respectively, and T em is Maxwell’s stress tensor which is given by:

T em =
−→
D
−→
E +

−→
B
−→
H − 1

2
I3×3(

−→
D.
−→
E +

−→
B .
−→
H ) (2)

where
−→
D ,
−→
E ,
−→
B and

−→
H are the electric displacement, electric and magnetic induction and

magnetic field vectors, respectively, and I3×3 is a unity dyad.

Assuming that incident field is a left-handed circularly polarized beam and decom-

posing the total fields into incident, reflected and transmitted fields, the local force can

also be decomposed into the contribution of incident, reflected and transmitted fields as

〈
−→
dF 〉 = 〈

−→
dFi〉+〈

−→
dFr〉+〈

−→
dFt〉 which can be obtained as the following by taking into account

the contributions of co- and cross-polarized scattering:

〈
−→
dFi〉 =

ẑ

2
ε0|Ei(x, y)|2 cos2(θi)dS

+
x̂

2
ε0|Ei(x, y)|2 cos θi sin θi cosϕidS

+
ŷ

2
ε0|Ei(x, y)|2 cos θi sin θi sinϕidS

(3)

〈
−→
dFr〉 =

ẑ

2
ε0|Ei(x, y)|2|rLL(x, y, λ, θi, ϕi)|2 cos2(θrLL)dS

+
ẑ

2
ε0|Ei(x, y)|2|rLR(x, y, λ, θi, ϕi)|2 cos2(θrLR)dS

− x̂

2
ε0|Ei(x, y)|2|rLL(x, y, λ, θi, ϕi)|2 cos(θrLL) sin(θrLL) cos(ϕrLL)dS

− x̂

2
ε0|Ei(x, y)|2|rLR(x, y, λ, θi, ϕi)|2 cos(θrLR) sin(θrLR) cos(ϕrLR)dS

− ŷ

2
ε0|Ei(x, y)|2|rLL(x, y, λ, θi, ϕi)|2 cos(θrLL) sin(θrLL) sin(ϕrLL)dS

− ŷ

2
ε0|Ei(x, y)|2|rLR(x, y, λ, θi, ϕi)|2 cos(θrLR) sin(θrLR) sin(ϕrLR)dS

(4)
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〈
−→
dFt〉 = − ẑ

2
ε0|Ei(x, y)|2|tLL(x, y, λ, θi, ϕi)|2 cos2(θtLL)dS

− ẑ

2
ε0|Ei(x, y)|2|tLR(x, y, λ, θi, ϕi)|2 cos2(θtLR)dS

− x̂

2
ε0|Ei(x, y)|2|tLL(x, y, λ, θi, ϕi)|2 cos(θtLL) sin(θtLL) cos(ϕtLL)dS

− x̂

2
ε0|Ei(x, y)|2|tLR(x, y, λ, θi, ϕi)|2 cos(θtLR) sin(θtLR) cos(ϕtLR)dS

− ŷ

2
ε0|Ei(x, y)|2|tLL(x, y, λ, θi, ϕi)|2 cos(θtLL) sin(θtLL) sin(ϕtLL)dS

− ŷ

2
ε0|Ei(x, y)|2|tLR(x, y, λ, θi, ϕi)|2 cos(θtLR) sin(θtLR) sin(ϕtLR)dS

(5)

wherein rLL and tLL are the reflection and transmission coefficients corresponding to the

left-handed circularly polarized scattered beams under illumination of a left-handed cir-

cularly polarized beam, rLR and tLR are the reflection and transmission coefficients corre-

sponding to the right-handed circularly polarized scattered beams under illumination of a

left-handed circularly polarized beam, θi and ϕi are the polar and azimuthal angles of in-

cidence, θrLL and ϕrLL are the polar and azimuthal angles of reflection for the left-handed

circularly polarized beam under illumination of a left-handed circularly polarized light,

and θrLR and ϕrLR are the polar and azimuthal angles of reflection for the right-handed

circularly polarized beam under illumination of a left-handed circularly polarized light.

θtLL, ϕtLL, θtLR, and ϕtLR denote the same for the transmitted beams. The reflection and

transmission angles are obtained based on generalized Snell’s laws according to the spatial

phase gradient profiles (Φ) imparted to the wavefronts of scattered light as the following:

sin(θrLL
) cos(ϕrLL

) = − 1

k0

∂ΦrLL
(x, y)

∂x
+ sin(θi) cos(ϕi) (6)

sin(θrLL
) sin(ϕrLL

) = − 1

k0

∂ΦrLL
(x, y)

∂y
+ sin(θi) sin(ϕi) (7)

sin(θtLR
) cos(ϕtLR

) = − 1

k0

∂ΦtLR
(x, y)

∂x
+ sin(θi) cos(ϕi) (8)

sin(θtLR
) sin(ϕtLR

) = − 1

k0

∂ΦtLR
(x, y)

∂y
+ sin(θi) sin(ϕi) (9)

In the above equations, the subscripts LL and LR denote the quantities corresponding

to the left-handed and right-handed circularly polarized beams under illumination of
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a left-handed circularly polarized incident beam, and the subscripts r and t stand for

reflected and transmitted beams. It should be noted that the partial derivative of ΦrLR

and ΦtLL with respect to spatial coordinates are zero given that only the scattered light

undergone cross circular polarization conversion experiences the geometric phase. As a

result, θrLR, ϕrLR, θtLL, and ϕtLL are ordinary reflection and transmission angles while the

rest of the angles are anomalous angles. The geometric phase spatial profiles of ΦrLL and

ΦtLR are determined by the orientation of unit cells across the interleaved metasail under

the assumption of local periodicity which are set to yield parabolic phase profiles with

different focal distances for propulsion and communication sub-arrays at the wavelength of

propulsion laser and communication, as described in the manuscript. Using Eqs. (3)-(9)

and full-wave RCWA simulation of unit cells in periodic arrangement, one can obtain the

imparted optical forces to the sail for any given nanostructured geometry of the metasail

under the assumption of local periodicity.

S2. Full-wave Simulations

As noted in the previous section and in the main manuscript, the optomechanical response

of the large-area metasail is evaluated by modeling the optical response based on gener-

alized Snell’s law under the assumption of local periodicity. This choice has been made

due to the fact that metasail dimensions extend over many wavelengths of light while

featuring subwavelength unit cells which rules out the possibility of a full-wave simulation

due to enormous computational complexity. Here, we conduct a full-wave simulation of

supercells consisting a periodic arrangement of a group of unit cells using rigorous coupled

wave analysis (RCWA) to verify the broadband wavefront engineering capability of the

designed unit cells for propulsion and communication sub-arrays, and evaluate agreement

of the optical responses with the predictions of the generalized Snell’s law based on local

periodicity. For this purpose, we consider a periodic arrangement of two supercells formed

by propulsion and communication unit cells as shown in Fig. 1(a) and (b), respectively.

Both supercells are consisted of six unit cells along x axis whose orientations are set such

that the reflected light undergone cross circular polarization conversion (ELL) is steered
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toward θrLL = 18◦ at λ0 = 1.3 µm for the propulsion array and toward θrLL = 15◦ at

λc = 1065 nm for the communication array. Figure 1(c) shows the results of simulations

for the wavefront of reflected light undergone cross circular polarization conversion. The

sub-figures showing the results in the wavelength range of λ = 1300 nm - λ = 1600 nm

correspond to the supercell of propulsion unit cells while the subfigure showing the result

at λ = 1065 nm corresponds to the supercell of communication unit cells. As it can

be clearly observed from the results, the reflected wavefronts are steered toward anoma-

lous reflection angles in the account of experiencing geometric phase. Minimal spurious

scattering is observed for the reflected light from the supercell of propulsion unit cells in-

dicating uniformity of reflection across the array while the anomalous reflection response

persists in a broad bandwidth due to dispersionless property of geometric phase. The

direction of reflected wavefront at λ0 = 1.3 µm denoted by the white arrow points to-

ward θrLL = 18◦ which is in excellent agreement with the prediction of generalized Snell’s

law under assumption of local periodicity. Moreover, the reflection angle grows steeper

at longer wavelengths due to dispersive response of the array which is consistent with

prescription of Eqs. (6)-(7). For the supercell consisting of communication unit cells at

λc = 1065 nm, although the spurious scattering is more considerable due to non-negligible

coupling effects between adjacent unit cells, the reflection response is dominated by the

anomalous reflection and the wavefront is mainly pointing toward θrLL = 15◦ as denoted

by the white arrow. It is noteworthy to mention that the sail’s aperture is divided into

few sections and still each section has a very large dimension with respect to the oper-

ating wavelength. Considering the assured applicability of the local periodicity, optical

functionality of each subsection is independent of the neighbouring subsections although

around the edges local periodicity assumption may not be satisfied well, but they are

very small fraction of the whole array. Consequently the utilized approximate method for

applied force calculation is in good agreement with the full-wave simulation results.

The results included in this section point toward applicability of the generalized Snell’s

law based on local periodicity assumption to describe the optical response of large-area

metasails and bring out the essential physics of the optomechanical response.
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Figure 1: Depiction of supercells consisting of (a) six propulsion unit cells and (b) six
communication unit cells whose orientations are set to steer the reflected light undergone
cross circular polarization conversion toward θrLL = 18◦ and θrLL = 15◦, respectively. (c)
The full-wave RCWA simulation results for the wavefronts of reflected light undergone
cross circular polarization conversion. The wavefronts shown in the wavelength range
of λ = 1300 nm - λ = 1600 nm correspond to the supercell of propulsion unit cells
while the subfigure showing the result at λ = 1065 nm corresponds to the supercell of
communication unit cells.

6


