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Photoelectrochemical measurements

Measurement setup descriptions: (1) photocurrent-potential curves, electrochemical impedance
spectra (EIS) and Mott-Schottky (MS) analysis were conducted in a standard three-electrode
configuration system. (2) A Newport AM 1.5 G solar simulator (150 W Oriel model 94021A,
Newport/Oriel instruments, USA) was used as a light source. (3) All the electrochemical tests

were measured via a Ivium CompactStat potentiostat.

Electrochemical Impendence Spectra (EIS) analyses are carried out at 0 V vs SCE at
afrequency range of 100 kHz to 0.1 Hz with an amplitude of 10 mV under AM 1.5G

illumination.

Mott-Schottky measurements were carried out at a frequency of 1 kHz in dark. The donor

densities were calculated by Mott-Schottky equation:
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Where €0 is the electron charge, €is the relative permittivity of BiVO, (¢ =68), 0 is the

permittivity of vacuum, Na is the donor density, V is the applied bias at the electrode, Vs is the

flatband potential.

Charge efficiencies calculation



Bulk charge separation efficiency (7buik) and interfacial charge transfer efficiency "surface
were calculated by the following equations:!-?
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Where/ phand/ »n “are the photocurrent density measured in electrolyte solution without and

with 0.1M Na,SO; as a hole scavenger, respectively. Jabsis the photon absorption rate expressed

]abSZ%fll'd)/l'nabsdl
as the photocurrent density, which was calculated by: A , where ¢ is the
charge of an electron, /4 is the Plank constant, c is the light speed, P2is the photon flux of the

AM 1.5G solar spectrum, "absis the absorbance of the photoanode.
Incident-photon-to-current-conversion efficiency

The incident-photon-to-current-conversion efficiency (IPCE) were performed by measuring the
photocurrent density under monochromated light irradiation with a 500 W Xe arc lamp coupled
into a grating monochromator, which were then calculated following the equation:

1239.8(V x nm) X |j,,(mA/cm?)|

IPCE = x 100%
A(nm) X P, (mW/cm?)
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Where j, 1s the photocurrent density, A the incident light wavelength, and Py, 1s the
calibrated and monochromated illumination power intensity®. The illumination intensities of

the monochromatic light were measured with a PM 100A Optical Power Meter.
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Figure S1. HRTEM image of (a) CTA500, (b) CTA5S00-HMAS, (c-d) HMAS8 and the

corresponding auto-correlated HRTEM lattice image (the inset).
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Figure S2. XRD patterns of CTA500, CTA500-HMA1, CTA500-HMA3, CTA500-HMAS,

CTA500-HMAS8, CTA500-HMA 10 showing the formation of pure- phase cubic Cd,SnOj,.
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Figure S3. XRD patterns of HMAX samples with the prolonged HMA time, showing the
formation of pure-phase cubic Cd,SnO, in HMA3, HMAS, HMAS8, and HMA 10 samples, while

large number of CdO impurities were co-existed in HMAL.
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Figure S4. The narrow-scan XPS spectra of (a) Cd 3d and Sn 3d (b) in CTA500, CTAS500-

HMAS and HMAS samples.

Table S1.  Atomic concentration (at%) of Cd and Sn elements derived from survey-scan XPS

spectra.
At.% Cd Sn
CTA500 6.9 4.7
CTA500-HMAS 6.0 4.0
HMAS 7.0 4.7

Table S2.  Atomic concentration (at%) of Cd and Sn elements obtained from ICP-OES.

At.% Cd Sn
CTAS00 17.83 13.25
CTAS500-HMAS 11.53 7.77

HMAS 14.32 10.26




Table S3.  Atomic ratios of O, Oy and O calculated from the XPS spectra in Figure 2d.

Samples O, o, O,
CTAS500 16.7 22.3 61.0
CTAS500-HMAS 16.0 22.9 61.1
HMAS 14.4 24.4 61.2

Table S4. Estimation of conduction band (Ecg) and valence band (Eyg) of CTAS00,

CTA500-HMAS and HMAS samples by Mott-Schottky plots (MS) analysis.

Samples Egg(eV) Ecgp(eV) Evyg(eV)
CTAS500 -0.78 -0.88 1.72
CTAS500-HMAS -0.79 -0.89 1.65
HMAS -0.80 -0.90 1.62

Table S5.  Performance comparison with other typical photocatalytic materials.

Photoanodes J Jx=12
Annealing method Ref.
(Cx=123) (LA cm?) (LA cm?)
Cd,SnO4(Cy/Jy) HMA (8min) 25 300
CTA (500°C, 2 h) 13 100 This
& HMA (5 min) Work
CTA (500°C, 2 h) 4 30
BiVO4(Cy/Jy) CTA (470°C, 5 h) 30 400
1
HMA (6 min) 80 1400
ZnFe,04(C5/)5) CTA (550°C, 3 h) 15 171

CTA (800°C, 20
min)




CTA (550°C, 3 h)

& HMA (5 min) 240 320
CTA (550°C, 2 h)
CdoSn04 (3) ¢ CTA (750°C. 2 ) 220 >
Cubic: CdySnO,  CTA (550°C, 2 h) 250 )

(Ca) & CTA (750°C, 2 h)

CTA (550°C, 2 h)

Ortho: Cd,SnO,4 & CTA (750°C,2 h) & 124 6

(Ca) CTA (1050°C, 2 h)
CAS0s(Co) g Cpa ((7555()22’122?) 357 6
ZnFe;04(Cs5) HMA (2 min) 150
CTA (850°C, 7.5 40 7
min)
0-Fe,05(C3/)) CTA (600°C, 1h) 13 60
HMA (10 min) 320 580 °

Ci:1 M KOH, 1.7 Vgug; C2:0.5 M KPi, 1.23 Vryg; C3:1 M KOH, 1.23 Vyyg; C4:1 M NaOH, 0.6
Vrue. J1: NaySOs as the sacrificial reagent. J,: H,O, as a hole scavenger. J;: 0.8 Vgyg, 0.24 M

Na,S and 0.35 M Na,SOs electrolyte.
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Figure SS5. (a) Linear sweep voltammetry (LSV) curves of the Cd,SnO, samples under
chopped light illumination (1 sun) at the scanning rate of 10 mV/s. (b) LSV curves of HMA

samples prepared at different HMA times under chopped light illumination (1 sun) at the

scanning rate of 10 mV/s.
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Figure S6. The J,,s values of CTA500, CTA500-HMAS and HMAS calculated to be 5.21,

5.61, and 5.63 mA/cm?, respectively.
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Figure S7. The LSV measurements of the recycled CTA500, CTAS00-HMAS and HMAS

after the stability test.



Figure S8. Typical SEM images of the recycled CTAS500 (a, d), CTA500-HMAS (b, e) and

HMAS (c, 1).
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