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Photoelectrochemical measurements

Measurement setup descriptions: (1) photocurrent-potential curves, electrochemical impedance 

spectra (EIS) and Mott-Schottky (MS) analysis were conducted in a standard three-electrode 

configuration system. (2) A Newport AM 1.5 G solar simulator (150 W Oriel model 94021A, 

Newport/Oriel instruments, USA) was used as a light source. (3) All the electrochemical tests 

were measured via a Ivium CompactStat potentiostat.

Electrochemical Impendence Spectra (EIS) analyses are carried out at 0 V vs SCE at 

afrequency range of 100 kHz to 0.1 Hz with an amplitude of 10 mV under AM 1.5G 

illumination.

Mott-Schottky measurements were carried out at a frequency of 1 kHz in dark. The donor 

densities were calculated by Mott-Schottky equation:
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Where  is the electron charge, is the relative permittivity of BiVO4 (  =68),  is the 𝑒0 𝜀 𝜀 𝜀0

permittivity of vacuum,  is the donor density,  is the applied bias at the electrode,  is the 𝑁𝑑 𝑉 𝑉𝑓

flatband potential.
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Bulk charge separation efficiency ( ) and interfacial charge transfer efficiency  𝜂𝑏𝑢𝑙𝑘 𝜂𝑠𝑢𝑟𝑓𝑎𝑐𝑒

were calculated by the following equations:1-2

𝜂𝑏𝑢𝑙𝑘= 𝐽
𝑁𝑎2𝑆𝑂3
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Where and are the photocurrent density measured in electrolyte solution without and 𝐽
𝐻2𝑂
𝑝ℎ 𝐽

𝑁𝑎2𝑆𝑂3
𝑝ℎ

with 0.1M Na2SO3 as a hole scavenger, respectively. is the photon absorption rate expressed 𝐽𝑎𝑏𝑠

as the photocurrent density, which was calculated by: , where q is the 
𝐽𝑎𝑏𝑠=

𝑞
ℎ𝑐∫

𝜆

𝜆 ⋅ 𝜙𝜆 ⋅ 𝜂𝑎𝑏𝑠𝑑𝜆

charge of an electron, h is the Plank constant, c is the light speed, is the photon flux of the 𝜙𝜆

AM 1.5G solar spectrum, is the absorbance of the photoanode.𝜂𝑎𝑏𝑠

Incident-photon-to-current-conversion efficiency 

The incident-photon-to-current-conversion efficiency (IPCE) were performed by measuring the 

photocurrent density under monochromated light irradiation with a 500 W Xe arc lamp coupled 

into a grating monochromator, which were then calculated following the equation:

𝐼𝑃𝐶𝐸=
1239.8(𝑉 × 𝑛𝑚) × |𝑗𝑝ℎ(𝑚𝐴/𝑐𝑚2)|

𝜆(𝑛𝑚) × 𝑃𝑚𝑜𝑛𝑜(𝑚𝑊/𝑐𝑚2)
× 100%

Where jph is the photocurrent density, λ the incident light wavelength, and Pmono is the 

calibrated and monochromated illumination power intensity3. The illumination intensities of 

the monochromatic light were measured with a PM 100A Optical Power Meter.
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Figure S1.  HRTEM image of (a) CTA500, (b) CTA500-HMA5, (c-d) HMA8 and the 

corresponding auto-correlated HRTEM lattice image (the inset).
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Figure S2. XRD patterns of CTA500, CTA500-HMA1, CTA500-HMA3, CTA500-HMA5, 

CTA500-HMA8, CTA500-HMA10 showing the formation of pure- phase cubic Cd2SnO4. 

Figure S3. XRD patterns of HMAX samples with the prolonged HMA time, showing the 

formation of pure-phase cubic Cd2SnO4 in HMA3, HMA5, HMA8, and HMA10 samples, while 

large number of CdO impurities were co-existed in HMA1.
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Figure S4. The narrow-scan XPS spectra of (a) Cd 3d and Sn 3d (b) in CTA500, CTA500-

HMA5 and HMA8 samples.

Table S1. Atomic concentration (at%) of Cd and Sn elements derived from survey-scan XPS 

spectra.

At.% Cd Sn

CTA500 6.9 4.7

CTA500-HMA5 6.0 4.0

HMA8 7.0 4.7

Table S2. Atomic concentration (at%) of Cd and Sn elements obtained from ICP-OES.

At.% Cd Sn

CTA500 17.83 13.25

CTA500-HMA5 11.53 7.77

HMA8 14.32 10.26
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Table S3. Atomic ratios of OL, OV and OC calculated from the XPS spectra in Figure 2d. 

Samples OL Ov Oc

CTA500 16.7 22.3 61.0

CTA500-HMA5 16.0 22.9 61.1

HMA8 14.4 24.4 61.2

Table S4. Estimation of conduction band (ECB) and valence band (EVB) of CTA500, 

CTA500-HMA5 and HMA8 samples by Mott-Schottky plots (MS) analysis.

Samples EFB(eV) ECB(eV) EVB(eV)

CTA500 -0.78 -0.88 1.72

CTA500-HMA5 -0.79 -0.89 1.65

HMA8 -0.80 -0.90 1.62

Table S5. Performance comparison with other typical photocatalytic materials.

Photoanodes

(Cx=1,2,3)
Annealing method

J

(μA cm-2)

Jx=1,2 

(μA cm-2)
Ref.

HMA (8min) 25 300

CTA (500℃, 2 h) 
& HMA (5 min) 13 100

Cd2SnO4(C1/J1)

CTA (500℃, 2 h) 4 30

This 
Work

CTA (470℃, 5 h) 30 400BiVO4(C2/J1)

HMA (6 min) 80 1400
1

ZnFe2O4(C3/J2) CTA (550℃, 3 h) 15 171

CTA (800℃, 20 
min) 25 50

4
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CTA (550℃, 3 h) 
& HMA (5 min) 240 320

Cd2SnO4 (J3)
CTA (550℃, 2 h) 

& CTA (750℃, 2 h) 220 5

Cubic: Cd2SnO4 
(C4)

CTA (550℃, 2 h) 
& CTA (750℃, 2 h) 280 6

Ortho: Cd2SnO4 
(C4)

CTA (550℃, 2 h) 
& CTA (750℃,2 h) & 

CTA (1050℃, 2 h)
124 6

Cd2SnO4 (C4)
CTA (550℃, 2 h) 

& CTA (750℃, 12 h) 357 6

HMA (2 min) 150ZnFe2O4(C3)

CTA (850℃, 7.5 
min) 40

7

α-Fe2O3(C3/J2) CTA (600℃, 1h) 13 60

HMA (10 min) 320 580
8

C1:1 M KOH, 1.7 VRHE; C2:0.5 M KPi, 1.23 VRHE; C3:1 M KOH, 1.23 VRHE; C4:1 M NaOH, 0.6 

VRHE. J1: Na2SO3 as the sacrificial reagent. J2: H2O2 as a hole scavenger. J3: 0.8 VRHE, 0.24 M 

Na2S and 0.35 M Na2SO3 electrolyte.



9

Figure S5. (a) Linear sweep voltammetry (LSV) curves of the Cd2SnO4 samples under 

chopped light illumination (1 sun) at the scanning rate of 10 mV/s. (b) LSV curves of HMA 

samples prepared at different HMA times under chopped light illumination (1 sun) at the 

scanning rate of 10 mV/s.

Figure S6. The Jabs values of CTA500, CTA500-HMA5 and HMA8 calculated to be 5.21, 

5.61, and 5.63 mA/cm2, respectively.

Figure S7. The LSV measurements of the recycled CTA500, CTA500-HMA5 and HMA8 

after the stability test.
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Figure S8.  Typical SEM images of the recycled CTA500 (a, d), CTA500-HMA5 (b, e) and 

HMA8 (c, f).
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