Electronic Supplementary Information for Highly Porous Nitrogen-Doped Carbon Superstructure Derived from the Intramolecular Cyclization-Induced Crystallization-Driven Self-Assembly of a Poly(amic acid)

Hui Sun*a, Xiao Lia, Kai Jina, Xiaoyong Lai*a and Jianzhong Du*b

^aState Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China E-mail: sunhui@nxu.edu.cn, xylai@nxu.edu.cn.

^bSchool of Materials Science and Engineering, Tongji University, Shanghai 201804, China E-mail: jzdu@tongji.edu.cn.

1. Schemes and Figures

Fig. S1. Nano-objects with various morphologies prepared from ICI-CDSA of PAA. (A) PAA solution

in DMF incubated at 153 °C for 10 min and (B) PAA solution solvothermal treated at 140 °C for 24 h.

Fig. S2. DLS results of the nano-objects obtained from the ICI-CDSA of PAA in DMF at different concentrations.

Fig. S3. Zeta potentials of the nano-objects obtained from the ICI-CDSA of PAA in DMF at different

concentrations.

Fig. S4. (A) Differential scanning calorimetry (DSC) and (B) thermogravimetry (TG) results of the hourglass-shaped superstructures pyrolyzed at nitrogen atmosphere.

Fig. S5. SEM image of N-CSs, confirming that the N-CSs was formed by carbon nanosheets.

Fig. S6. SEM images of N-CSs by the pyrolysis of hourglass-shaped superstructures at (A) 700 and (B)

900 °C.

Fig. S7. Insight into the inner structure of N-CSs. (A) and (B) SEM images of N-CSs at different magnification.

Fig. S8. XRD pattern of N-CSs.

Fig. S9. Raman spectra of N-CSs pyrolized at (A) 700 and (B) 900 °C.

Fig. S10. Nitrogen adsorption/desorption isotherm of hourglass-shaped superstructures.

Fig. S11. XPS results of N-CSs. (A) Element contents and (B) high resolution spectrum of carbon.

Fig. S12. CV curves of N-CSs at scan rates from 2 to 100 mV s⁻¹.

Fig. S13. GC curves of N-CSs pyrolized at (A) 700 and (B) 900 °C at a current density of 0.5 A g⁻¹.

Fig. S14. The relationship between EDLC/capacitance of N-CSs and the square root of scan rate (v^{0.5}). Dunn's method¹

Dunn's method provides a reliable way to calculate the capacitance contribution of the surface capacitive effects such as the EDL capacitive effects and the diffusion-controlled processes such as pseudocapacitive reactions. At a specific potential, the current density (i) from the CV curves can be expressed as following:

$$i = k_1 v + k_2 v^{0.5}$$
 (I)

Where k_1v and $k_2v^{0.5}$ represent the surface capacitive- and diffusion-controlled current contributions, respectively. Divided by $v^{0.5}$ on both sides of equation I, and equation II was obtained.

$$iv^{-0.5} = k_1 v^{0.5} + k_2$$
 (II)

At a fixed potential, the $iv^{-0.5}$ should have a linear relationship with the square root of scan rates $(v^{0.5})$, and the slope of k_1 and a y-intercept of k_2 are obtained. The k_1v represents the surface capacitivecontrolled current contribution. At different potentials, a series of k_1 and k_2 could be calculated, and the corresponding surface capacitive-controlled current contributions are obtained.

Fig. S15. Capacitance contribution analysis by Trasatti's method. (A) Relationship between the reciprocal of gravimetric capacitance (C^{-1}) and the square root of scan rate ($v^{0.5}$) and (B) relationship between gravimetric capacitance (C) and the reciprocal of square root of scan rate ($v^{-0.5}$).

Trasatti's method 1

The analysis of contribution of electrochemical double-layer capacitance (EDLC) and pseudocapacitance to the total capacitance by Trasatti's method refers to previous study.¹ Generally, the gravimetric capacitances (C) of N-CSs at different scan rates were calculated according to equation III.

$$C = A/2mv\Delta V$$
 (III)

Where A is the area of CV curve, m (g) is the quality of the N-CSs, v is the scan rate (V s⁻¹), and ΔV is the potential window.

The reciprocal of gravimetric capacitances (C^{-1}) will has a linear relationship with the square root of scan rates ($v^{0.5}$), assuming ion diffusion follows a semi-infinite diffusion pattern, as illustrated in equation IV.

$$C^{-1} = av^{0.5} + b$$
 (IV)

Where b is the reciprocal of total gravimetric capacitance, in other words, the sum of EDLC and pseudocapacitance.

Similarly, the gravimetric capacitances (C^1) will has a linear relationship with the reciprocal of square root of scan rates ($v^{-0.5}$), like equation V.

$$C^1 = a'v^{-0.5} + b'$$
 (V)

Where b' is the EDLC, and the pseudocapacitance could be obtained by subtracting EDLC from total gravimetric capacitance.

Calculation of the utilization of N-6 and N-5¹⁻³

The calculation of the utilization of N-6 and N-5 is based on the results of the calculated pseudocapacitance. It is assumed that the pseudocapacitance is generated from the Faraday reaction of N-6 and N-5. The actual stored electric charge (Q_a (C)) by N-6 and N-5 was calculated to be:

$$Q_a = mC_p \Delta V$$
 (VI)

Where m (g) is the quality of N-CSs, C_p (F g⁻¹) is the pseudocapacitance.

While the theoretically stored electric charge (Qt) was calculated according to the following equation:

$$Q_t = 2(mW_{N5, N6} F)/M_N$$
 (VII)

Where W_{N5, N6} is the weight percentage of N-5 and N-6 in N-CSs, F is Faraday constant (96485 C mol⁻¹)

and M_N is the atomic weight of nitrogen.

Therefore, the utilization of N-5 and N-6 could be calculated by equation VIII.

$$X = Q_a/Q_t$$
 (VIII)

Table S1. Comparison of the structure parameters and electrochemical performances of N-doped

Electrode	Electrolyte ^a	$S_{BET}\left(m^2~g^{-1}\right)$	Pore Width	C (F g ⁻¹) ^b	C/ S _{BET}	References
Materials			(nm)		(µF cm ⁻²)	
GO@NMC-3	6 M KOH	255	17	231	90.6	1
HCSs	6 M KOH	923	3.9	535	57.2	4
NG	6 M KOH	588	11.1	289	49.1	5
H-NMC-2.5	6 M KOH	537	14.8	227	42.3	6
PA-850	6 M KOH	753	<0.8, 1.5	302	40.1	7
PACNP-20	6 M KOH	1317	2.1	362	27.5	8
OMCNS	6 M KOH	814	3.1	179	22.3	9
N-CSs	6 M KOH	2106	~ 2.3	398	18.9	10
MCC-6H	6 M KOH	1797	<3.0, 10-30	301	16.8	11
NHPC-800	6 M KOH	1848	1.0-2.0, 2.0-	260	14.1	12
			100			
HLPC	6 M KOH	2725	0.7-2.0, 2.0-	342	12.6	13
			3.4			
KPAC-800	6 M KOH	2988	2.1, 2.5,	238	7.97	14
			2.5-8.0			
N-CSs	6 M KOH	381	1.0, 3.8,	279°	76.5	This work
			7.1-38.6			

carbon materials with literature results.

^aThe electrochemical measurements were conducted via a three-electrode system using 6 M KOH as electrolyte. ^bThe specific capacitance was obtained at a current density of 0.2 A g⁻¹ in previous studies.

 $^{\rm c} The specific capacitance of this work was obtained at a current density of 0.5 A <math display="inline">g^{-1}.$

2. References

- (1) Zhang, L.; Wang, T.; Gao, T.-N.; Xiong, H.; Zhang, R.; Liu, Z.; Song, S.; Dai, S.; Qiao, Z.-A. CCS Chem. 2020, 2, 870-881.
- (2) Wang, Y.; Song, Y.; Xia, Y. Chem. Soc. Rev. 2016, 45, 5925-5950.
- (3) Song, Y.; Li, L.; Wang, Y.; Wang, C.; Guo, Z.; Xia, Y. Chemphyschem 2014, 15, 2084-2093.
- (4) Chen, Z.; Cao, R.; Ge, Y.; Tu, Y.; Xia, Y.; Yang, X. J. Power Sources 2017, 363, 356-364.
- (5) Li, M.; Xue, J. J. Phys. Chem. C 2014, 118, 2507-2517.
- (6) Wei, J.; Zhou, D.; Sun, Z.; Deng, Y.; Xia, Y.; Zhao, D. Adv. Funct. Mater. 2013, 23, 2322-2328.
- (7) Huang, K.; Li, M.; Chen, Z.; Yao, Y.; Yang, X. Electrochim. Acta 2015, 158, 306-313.
- (8) Ma, C.; Li, Y.; Shi, J.; Song, Y.; Liu, L. Chem. Eng. J. 2014, 249, 216-225.
- (9) Yu, X.; Wang, J.-g.; Huang, Z.-H.; Shen, W.; Kang, F. Electrochem. Commun. 2013, 36, 66-70.
- (10) Gao, S.; Chen, Y.; Fan, H.; Wei, X.; Hu, C.; Luo, H.; Qu, L. J. Mater. Chem. A 2014, 2, 3317-3324.
- (11) Wang, T.; Sun, Y.; Zhang, L.; Li, K.; Yi, Y.; Song, S.; Li, M.; Qiao, Z.-A.; Dai, S. Adv. Mater.
 2019, 31, 1807876.
- (12) Zhou, J.; Zhang, Z.; Xing, W.; Yu, J.; Han, G.; Si, W.; Zhuo, S. *Electrochim. Acta* 2015, *153*, 68-75.
- (13) Liang, Q.; Ye, L.; Huang, Z.-H.; Xu, Q.; Bai, Y.; Kang, F.; Yang, Q.-H. Nanoscale 2014, 6, 13831-13837.
- (14) Cheng, P.; Gao, S.; Zang, P.; Yang, X.; Bai, Y.; Xu, H.; Liu, Z.; Lei, Z. Carbon 2015, 93, 315-324.