Ultrafast formation of ANFs with kinetic advantage and new insight in mechanism

Lianqing Huang^a, Meiyun Zhang^a, *, Jingyi Nie^a, *, Bin Yang^a, *, Jiaojun Tan^a, Shunxi Song^a

a College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper-Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi an 710021, China

* Corresponding author.

E-mail addresses: niejingyi@sust.edu.cn (J. Nie), mymyzhang@sust.edu.cn (M. Zhang).

Figure S1. Microstructure of fiber pretreated by alkali solution. (a) Unwashed fibers and (c) washed fibers which were pretreated with alkaline solution. (b) and (d) were zoom images, respectively.

Figure S2. Hypothesis of the formation of ANFs.

Volume of	Mass of	КОН:	Concentration	Volume of	Concentration
H ₂ O (ml)	KOH (g)	Aramid	of KOH in	DMSO	of ANFs (wt
		fibers (g:g)	H ₂ O (g·ml ⁻¹)	(ml)	%)
2	0.05	1:2	0.025	50	0.2
2	0.1	2:2	0.05	50	0.2
2	0.15	3:2	0.075	50	0.2
2	0.2	4:2	0.1	50	0.2
2	0.25	5:2	0.125	50	0.2

Table S1. Different mass ratios of KOH to aramid fibers

Table S2. Different volume ratios of H_2O to DMSO

Volume of	Volume	Mass of	Concentration	Volume of	Concentration
H ₂ O (ml)	percentage	КОН	of KOH in	DMSO	of ANFs (<i>wt</i>
		(g)	H ₂ O (g ml ⁻¹)	(ml)	%)
0.5	1%	0.15	0.3	50	0.2
1	2%	0.15	0.15	50	0.2
1.5	3%	0.15	0.1	50	0.2
2	4%	0.15	0.075	50	0.2
2.5	5%	0.15	0.06	50	0.2

Preparation	Concentration	Diameter	Energy	Operability	Preparation	Ref
Method		of ANFs	Consumption		time	
Polymerizatio	3 <i>wt</i> %	20-50 nm	Low	Low		1
n induced						
self-assembly						
Electrospinni	-	275 nm-15	High	Low	-	2
ng		μm				
Immersion	-	500-1000	Medium	Low	-	3
Rotary Jet-		nm				
Spinning						
Mechanical	1 <i>wt</i> %	10-200 nm	High	Low	-	4
Disintegration						
Deprotonatio	0.2 <i>wt</i> %	3-30 nm	Low	High	7 days	5
n						
Proton donor-	0.2 <i>wt</i> %	10-12 nm	Low	High	4 h	6
assisted						
monomer-to-	0.2 <i>wt</i> %	122 nm	Low	High	15 h	7
ANFs		(DLS-				
synthesis		determine				
		d size)				
Sol-Group	0.2 <i>wt</i> %	10-20 nm	Low	High	20 min	Th
						WO
Pre-Group	0.2 <i>wt</i> %	10-20 nm	Low	High	10 min	Th
						WO

Table S3. Summary of ANFs preparation methods

Aramid fiber	ANFs/DMSO	Assignment/%	Shift
	950, 1047, 1423	DMSO	Appear
1183	1159	Ring C-H in-plane	shift
		bending	
1276	1263	N-H in-plane	shift
		bending, ring C-H	
		stretching	
1324	1356	Ring C-H in-plane	shift
		bending, N-H in-	
		plane bending	
1400	1431	Ring C-H in-plane	shift
		bending, ring C-C	
		stretching	
1509	1535	ring C-H in-plane	shift
		bending, ring C-C	
		stretching	
1611	1606	ring C-C stretching,	shift
		C=O stretching	
1650		C=O stretching B, N-	Disappear
		C stretching	
1276 1324 1400 1509 1611 1650	1263 1356 1431 1535 1606	bending N-H in-plane bending, ring C-H stretching Ring C-H in-plane bending, N-H in- plane bending Ring C-H in-plane bending, ring C-C stretching ring C-H in-plane bending, ring C-C stretching ring C-C stretching, C=O stretching B, N- C stretching	shift shift shift shift shift Disappear

 Table S4. Wavenumbers and vibration types of aramid fibers and ANFs in Raman scattering.

scattering.					
Aramid fiber	ANFs/DMSO	Assignment	Shift		
	1020	DMSO	Appear		
	1423	DMSO	Appear		
819	831	C-H aromatic ring	Shift		
864	900	Ring C-H out-of-	Shift		
		plane bending			
964	950	Ring C-H and N-H	Shift		
		in-plane bending			
1103	1065	Ring C-H and N-H	Shift		
		in-plane bending			
1299	1309	Ring C-C, C-N and Shift			
		N-H vibration			
1395	1413	Ring C-H, N-H and	Shift		
		C-H in-plane			
		bending, ring			
		vibration			
1608	1653	C-C, N-C and C-H	Shift		
		in-plane bending			
1670	1653	Amide I Shift			
1538		Amide II Disappear			

Table S5. Wavenumbers and vibration types of aramid fibers and ANFs in FT-IR

Figure S3. UV-Vis absorption and reaction rate of ANFs with different time when mass radios of KOH to aramid fibers was 1:2.

Figure S4. UV-Vis absorption and reaction rate of ANFs with different time when mass radios of KOH to aramid fibers was 2:2.

Figure S5. UV-Vis absorption and reaction rate of ANFs with different time when mass radios of KOH to aramid fibers was 3:2.

Figure S6. UV-Vis absorption and reaction rate of ANFs with different time when mass radios of KOH to aramid fibers was 4:2.

Figure S7. UV-Vis absorption and reaction rate of ANFs with different time when mass radios of KOH to aramid fibers was 5:2.

Figure S8. UV-Vis absorption and reaction rate of ANFs with different time when volume radios of H₂O to DMSO was 1%.

Figure S9. UV-Vis absorption and reaction rate of ANFs with different time when volume radios of H₂O to DMSO was 2%.

Figure S10. UV-Vis absorption and reaction rate of ANFs with different time when volume radios of H_2O to DMSO was 3%.

Figure S11. UV-Vis absorption and reaction rate of ANFs with different time when volume radios of H_2O to DMSO was 4%.

Figure S12. UV-Vis absorption and reaction rate of ANFs with different time when volume radios of H_2O to DMSO was 5%

$$\begin{split} \delta_{mix} &= \varphi_1 \cdot \delta_1 + \varphi_2 \cdot \delta_2 \quad \text{(Equ 1)} \\ & \left| \delta_{mix} - \delta_{ANFs} \right| {\rightarrow} 0 \quad \text{(Equ 2)} \end{split}$$

 δ_{mix} represents the solubility coefficient of the mixing system, δ_1 and δ_2 respectively represent the solubility coefficient of the two components in the mixing system, φ_1 and φ_2 respectively represent the mole fraction of the two components in the mixing system. If δ_{Mix} is close to δ_{ANFs} , the compatibility between the two components is better and the system is more stable \circ

Reference

- 1. H. C. Yan, J. L. Li, W. T. Tian, L. Y. He, X. L. Tuo and T. Qiu, *RSC Adv.*, 2016, 6, 26599-26605.
- J. Yao, J. Jin, E. Lepore, N. M. Pugno, C. W. M. Bastiaansen and T. Peijs, *Macromol. Mater.* Eng., 2015, 300, 1238-1245.
- G. M. Gonzalez, L. A. MacQueen, J. U. Lind, S. A. Fitzgibbons, C. O. Chantre, I. Huggler, H. M. Golecki, J. A. Goss and K. K. Parker, *Macromol. Mater. Eng.*, 2017, 302.
- 4. S. Ifuku, H. Maeta, H. Izawa, M. Morimoto and H. Saimoto, *RSC Adv.*, 2014, 4, 40377-40380.
- M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu, A. Waas, E. M. Arruda, J. Kieffer, M. D. Thouless and N. A. Kotov, ACS Nano, 2011, 5, 6945-6954.
- 6. B. Yang, L. Wang, M. Zhang, J. Luo and X. Ding, ACS Nano, 2019, 13, 7886-7897.
- J. M. Koo, H. Kim, M. Lee, S. A. Park, H. Jeon, S. H. Shin, S. M. Kim, H. G. Cha, J. Jegal, B. S. Kim, B. G. Choi, S. Y. Hwang, D. X. Oh and J. Park, *Macromolecules*, 2019, **52**, 923-934.