# Supplement S1 - Method Details

January 22, 2021

## **1** Sample Fabrication

Each sample was fabricated in four steps (see Fig. 1). First, a thin ( $\approx 25 \text{ nm}$ ) gold layer was thermally evaporated on a on a 5 nm chromium adhesion layer on top of a silicon substrate. Then spin-coating of a polymethyl methacrylate (PMMA) layer (< 200 nm) on top was performed. With electron beam lithography, pores with a diameter of  $\approx 35 \text{ nm}$  arranged in a triangular lattice were created in the PMMA. NiFe nanomagnets were manufactured by electrodeposition into the porous PMMA templates on the Si-Au substrate. In a last step, the PMMA template was dissolved in acetone.



Fabrication scheme: (1) The sample consists of a silicon substrate with a gold layer and spin-coated PMMA resist on top. (2) Pores arranged in a triangular lattice are created with e-beam lithography. (3) NiFe nanomagnets are electrodeposited into the porous template and (4) the PMMA is dissolved in acetone.

#### 1.1 Templates

PMMA 950k 3% resist was used for spin-coating at a speed of 3000 rpm. Development of the resist was carried out in a Hamatec Spraydeveloper with a Methyl isobutyl ketone (MIBK) : Isopropyl Alcohol (IPA) 3:1 developer for 45 s. In a next step, the samples were rinsed in IPA for a total of 60 s, while adding deionised water for 5 s after 30 s before spin-drying was performed.

Triangular Pore Lattices were fabricated by electron-beam lithography in an EPBG5000PlusES setup. The symmetric lattice (a = 70 nm) was fabricated with a dose of  $250 \,\mu\text{C} \,\text{cm}^{-1}$ , the symmetric (a = 60 nm) and 10% compressed lattice (a = 60 nm) with a dose of  $235 \,\mu\text{C} \,\text{cm}^{-1}$ . In order to pattern areas in the range of cm<sup>2</sup>, we used a high-frequency single-shot mode, which yielded exposure times in the order of 27 hours, and 18 hours for the symmetric (a = 70 nm) and for the symmetric (a = 60 nm) and 10% compressed (a = 60 nm) lattice, respectively.

All templates were treated with O<sub>2</sub> plasma in an Oxford Plasmalab 100 (RIE) 100 for 15 s prior electrodeposition.

### 1.2 Electrodeposition

Galvanostatic electrodeposition was carried out in a bath containing 0.6 ,mol  $l^{-1}$  Ni(SO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>, 0.0175 mol  $l^{-1}$  FeSO<sub>4</sub>, 0.5 mol  $l^{-1}$  H<sub>3</sub>BO<sub>3</sub>, 0.007 mol  $l^{-1}$  CH<sub>3</sub>(CH<sub>2</sub>)<sub>11</sub>OSO<sub>3</sub> (SDS), 0.0109 mol  $l^{-1}$  C<sub>7</sub>H<sub>5</sub>NO<sub>3</sub>S (saccharine) and 0.25g  $l^{-1}$  C<sub>6</sub>H<sub>8</sub>O<sub>6</sub> (ascorbic acid). A titanium platinised anode mesh was utilized as an anode and Ag/AgCl was used as reference electrode. All presented samples were created with an on/off pulse deposition of 10 ms and 90 ms respectively and an applied current density of -70 mA/cm<sup>2</sup> by using a Metrohm Autolab PGSTAT302N potentiosatat for a deposition time of 100 s. The deposition temperature was held at 35 °C in a double-walled electrochemical cell.

## 2 Composition

The composition of the samples was measured by a Thermo Fisher Scientific X-ray Fluorescence Spectrometer. The measurements revealed the approximate composition of 56 at.% Ni and 44 at.% Fe.

## 3 Imaging

Sample images were recorded with a Tescan Lyra scanning electron microscope.