Supporting Information

Strong Purcell Enhancement at Telecom Wavelengths Afforded by Spinel Fe₃O₄ Nanocrystals with Size-Tunable Plasmonic Properties

Ekaterina A. Dolgopolova,^a Dongfang Li,^a Steven T. Hartman,^b John Watt,^a Carlos Ríos,^{c,d} Juejun Hu,^c Ravi Kukkadapu,^e Joanna Casson,^f Riya Bose,^g Anton V. Malko,^g Anastasia V. Blake,^a Sergei Ivanov,^a Oleksiy Roslyak^h, Andrei Piryatinski,ⁱ Han Htoon,^a Hou-Tong Chen,^a Ghanshyam Pilania,^b Jennifer A. Hollingsworth^{a*}

- ^{a.} Materials Physics and Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
- ^{b.} Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
- ^c Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- ^{d.} Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
- ^{*f.*} Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
- ^{g.} Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, United States
- ^{h.} Department of Physics and Engineering Physics, Fordham University, Bronx, NY 10458, United States
- ^{*i*} Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States

Table of contents:

Materials	S3
Preparation of Fe ₃ O ₄ NCs	S3
Nanocrystal characterization	S3
Figure S1. Representative TEM images and respective size distribution histograms	
of Fe ₃ O ₄ NCs with different particle sizes	S5
Table S1. Synthetic parameters, NC size, λ_{max} and E_g for the obtained NCs	S5
Figure S2. LSPR peak wavelength plotted as a function of the solvent refractive	
index for Fe ₃ O ₄ NCs	S6
Figure S3. Plots of $(\alpha h v)^2$ vs photon energy in different solvents	S6
Technical details of DFT computations	S7
Figure S4. Fe ₃ O ₄ inverse spinel structure and DFT-computed electronic band structure	S9
Figure S5. DFT-computed electronic band structure for Fe ₃ O ₄ when one electron	
is added to the supercell	S9
Figure S6. DFT-computed electronic band structure of off stoichiometric Fe ₃ O ₄	
with one electron removed from the supercell	S10
Figure S7. The computed formation energies of point defects in Fe ₃ O ₄	S10
Calculation of magnetic dead layer	S11
Figure S8. Saturation magnetization versus the reciprocal of the average diameter	S11
Figure S9. Core size versus LSPR maximum wavelength	S11
Acid dissolution method	S12
Figure S10. ⁵⁷ Fe Mössbauer spectra of Fe ₃ O ₄ NCs	S12
Table S2. Composition data determined by ⁵⁷ Fe Mössbauer spectrometry	
and acidic dissolution method	S13
Fabrication of coupled NP/QDs systems	S14
Figure S11. Fluorescence decays of QDs on PMMA film, Fe ₃ O ₄ NCs thin films	
covered with PMMA spacer layer, and Fe ₃ O ₄ NCs thin film	S14
Figure S12. Normalized absorbance of Fe ₃ O ₄ thin film covered with 10 nm layer of	
GSS and GSST spacers	S14
Figure S13. Refractive indices and exctintion coefficient of GSST spacer	S15
Figure S14. Refractive indices and exctintion coefficient of GSS spacer	S15
Figure S15. The Purcell factor as a function of spacer thickness for spacer materials	S16
Tables S3-5. Extracted τ_1 and τ_2 photoluminescence lifetimes	S17
References	S19

Materials. Iron(II) acetylacetonate (97%, Combi-Blocks), iron(III) acetylacetonate (99.9%, Sigma-Aldrich), lead(II) chloride (99.999%, Alfa Aesar), cadmium oxide (>99.99%, Sigma-Aldrich, oleylamine (technical grade, 70%, Sigma-Aldrich), oleic acid (90%, Alfa Aesar), benzyl ether (99%, Acros Organic), octadecene (technical grade, 90%, Sigma-Aldrich), 1,2-hexadecanodiol (90%, Sigma-Aldrich), sulfur (99.999%, Acros Organics), chloroform (≥99.8%, Sigma-Aldrich), ethanol (200 proof, Electron Microscopy Sciences), 1-butanol (99.9%, Sigma-Aldrich), carbon disulfide (ACS grade, Sigma-Aldrich), carbon tetrachloride (reagent grade, 99.9%, Sigma-Aldrich), tetrachloroethylene (99.5%, Sigma-Aldrich), and methanol (>99.9%, Sigma-Aldrich) were used as received without any further purification. All syntheses were carried out under an argon atmosphere using standard Schlenk line techniques. PbS/CdS QDs were prepared according to previously reported literature procedure.¹

Preparation of Fe₃O₄ NPs.

Approach I. The samples were prepared by adaptation of the literature procedure.² In a 50 mL round-bottom flask, 0.5 mmol of Fe(acac)₃ (0.18 g) (**A-I-1**) or Fe(acac)₂ (0.13 g) (**A-I-2**) were evacuated for 20 min under vacuum at room temperature. Then, a mixture of oleic acid (1.5 mmol, 0.47 mL), oleylamine (1.5 mmol, 0.49 mL), 1,2-hexadecanediol (2.5 mmol, 0.295 g), and benzyl ether (5 mL) was added to the flask. The resulting reaction mixture was heated to 200 °C at the rate of 20 °/min and allowed to anneal for 24 h. After 24 h, the reaction mixture was cooled down to room temperature. The obtained dark brown nanoparticles were washed three times by dispersion in chloroform, followed by precipitation by addition of ethanol.

Approach II. The sample was prepared by adaptation of the literature procedure.³ The variation in the reaction time was used to achieve a control over nanoparticle size. In a 50 mL round-bottom flask, Fe(acac)₃ (0.14 g, 0.40 mmol) was added to a mixture of oleic acid (0.25 ml) and benzyl ether (3.9 ml). The resulting mixture was degassed for 1 h at room temperature. Then, the solution was heated to 290 °C at the rate of 20 °/min. The reaction mixture was kept at this temperature for 0.5 or 1 h and then cooled down to room temperature. The resulting dark brown nanoparticles were washed three times by dispersion in chloroform, followed by precipitation by addition of ethanol. Approach III. The samples were prepared using modified literature procedure.⁴ The effect of precursor nature and reaction temperature was investigated. In a typical synthesis, $0.34 \text{ g Fe}(\text{acac})_3$ (0.96 mmol) or 0.25 mg Fe(acac)₂ (0.96 mmol) were dissolved in a mixture of 1.0 mL oleylamine, 2.2 mL oleic acid, and 6.1 mL octadecene in a 50 mL round bottom three-neck flask. The resulting mixture was heated to 80 °C to dissolve all the materials. The solution was then degassed at 130 °C for 1 h and heated to the reaction temperature (Table S1) under argon flux for 1 h. After 1 h, the reaction mixture was cooled down to room temperature. The obtained dark brown nanoparticles were washed three times by dispersion on chloroform, followed by precipitation by addition of ethanol.

Nanocrystal Characterization. Nanocrystal size and shape were assessed by transmission electron microscopy (TEM) using a JOEL 2010 operating at 200 kV. The average diameter and standard deviation in sizes of different NCs were obtained by analyzing 200 NCs from their corresponding TEM images using ImageJ software and fitting the statistics to a Gaussian size distribution. Absorption spectra were collected on a Cary Varian 5000 UV-Vis-NIR spectrophotometer. Emission spectra were collected using a Horiba Scientific Nanolog spectrofluorimeter using a 450 W Xe arc lamp for excitation. Mössbauer spectroscopy measurements were collected with a WissEl Elektronik (Germany) instrument that included a

closed-cycle cryostat SHI-850 unit obtained from Janis Research Company, Inc., (Wilmington, MA), a Sumitomo CKW-21 He compressor unit (Allentown, PA), and a <75 mCi ⁵⁷Co/Rh source (See Co, Edina, MN). An Ar-Kr proportional counter obtained from LND Inc. (Oceanside, NY) was used as the detector. The setup data was folded to provide a flat background and a zero-velocity position corresponding to the center shift (CS) of a metal Fe foil (7-mm) at room temperature. Data was collected slightly above the Verwey transition temperature of the magnetite (120-140 K) to estimate Fe(II)/Fe(III) ratio of the solids.⁵ The data was modeled with Recoil software (University of Ottawa, Canada) using a Voigt-based structural fitting routine, as outlined by Rancourt and Ping.⁶ The sample preparation (type of the sample holder, etc.) was similar to the procedure reported in Boiteau *et al.*, 2019.⁷ DC magnetization curves were recorded from -2.38 x 10^6 A/m to 2.38 x 10^6 A/m at 50 K using a Quantum Designs Versalab vibrating sample magnetometer (VSM).

Figure S1. Representative TEM images and respective size distribution histograms of Fe₃O₄ NCs with different particle sizes a) 8.2 ± 1.6 nm; b) 13.6 ± 3.7 nm, and c) 20.7 ± 4.5 nm.

Table S1. Synthetic parameters, NC diameter, calculated maghemite shell thickness, λ_{max} and E_g for the obtained NCs.

	time, h	t, °C	D _{TEM} , nm	e, nm	λ _{max} , nm	$E_{\rm g},{ m eV}$
Approach I						
A-I-1	24	200	5.2±1.1	0.67	1287	1.04
A-I-2	24	200	6.3 ± 1.8	0.50	1383	1.25
Approach II						
A-II-1	0.5	290	18.2 ± 4.3	1.2	1491	0.90
A-II-2	0.3	290	13.6 ± 3.7		1444	1.09
A-II-3	1	290	23.5±3.6	0.4	1738	0.76
A-II-4		290	20.7 ± 4.5		1693	0.81
Approach III						
A-III-1		310	9.2 ± 2.5	0.48	1458	1.04
A-III-2		310	9.5 ± 2.0		1394	1.25
A-III-3		310	8.2 ± 1.6	0.56	1437	1.14
A-III-4	1	260	7.3 ± 4.0	0.50	1382	1.06
A-III-5		280	8.5 ± 2.5	0.54	1319	1.18
A-III-6		290	16.0 ± 3.0		1602	0.85
A-III-7		300	8.1±3.5	0.33	1418	1.30

Figure S2. LSPR peak wavelength plotted as a function of the solvent refractive index for Fe₃O₄ NCs: **A-III-4** (orange), **A-III-5** (green), **A-I-2** (red), and **A-III-3** (blue). The dashed lines show liner fits.

Figure S3. Plots of $(\alpha h \nu)^2$ vs photon energy for **A-III-4** in different solvents: chloroform (red), trichloroethylene (green), and carbon disulfide (blue).

Technical details of DFT computations:

To compute the electronic band structure of bulk magnetite, DFT computations were performed using the projector augmented wave (PAW) method as implemented within the Vienna *Ab Initio* Simulation Package (VASP). Generalized gradient approximation (GGA) of Perdew, Burke and Ernzerhof (PBE) for the exchange–correlation potential, a 500 eV cut-off energy for the plane wave basis set and a 10^{-5} eV energy convergence criterion for the self-consistent field cycles of the electronic charge density were employed. A Gamma-centered $3 \times 3 \times 3 k$ -point mesh was used for the Brillouin zone sampling and a Hubbard correction with U = 5.3 eV within the Dudarev's formulation was required to correctly describe the localized *d*-orbitals of Fe. Spin polarized calculations were performed with all the magnetic moments on Fe atoms ferromagnetically aligned within each of the O_h and T_d sites, while antiferromagnetically aligned with respect to each other.

Supercells containing 16 Fe atoms at the octahedral sublattice and 8 tetrahedrally coordinated Fe atoms were considered to model the inverse Fe₃O₄ spinel structure within the low temperature tetragonal P4₁22 and high temperature cubic Fd-3m phases. Our computations show that a symmetry breaking going from the cubic to the tetragonal phase leads to a slight lowering of the total energy (0.11 eV/formula unit) with slight opening of the bandgap. For the subsequent computations, the low energy configuration was considered.

For the stochiometric case, all the Fe atoms at the T_d sites exhibit a +3 oxidation state, while an equimolar ordered ground state configuration of Fe³⁺ and Fe²⁺ ions is adopted at the O_h sites. Nonstoichiometric magnetite bulk structures were simulated either by adding or removing one or two electrons per supercell. The added (removed) electrons lead to a higher (lower) ratio of Fe²⁺/Fe³⁺ on the octahedral sublattice. For the nonstoichiometric cases involving either added or removed electrons, first-order monopole corrections were used to adequately correct for unphysical electrostatic interactions of the charged finite supercells with periodic boundary conditions. The geometry of the bulk stoichiometric system was fully relaxed by allowing the volume, cell shape and the internal coordinates to change during the relaxation process and the lattice parameter of the cubic cell was kept fixed at the optimized value of 8.537 Å for subsequent nonstoichiometric computations with either one or two electrons added or removed. Density functional perturbation theory was used to compute the electronic contribution of the dielectric permittivity.

Defect formation energies in Fe₃O₄ were calculated using a 112-atom $P4_122$ supercell, with finite-size corrections according to the method of Freysoldt *et al.* for charged defects.⁸ Defect structures were generated using the PyCDT software package⁹ and calculated in compatibility with the PBE + U calculations of the Materials Project, which required adding the metal oxide correction that is used in the Materials Project but not currently implemented in PyCDT. We also applied band edge shifting corrections for an HSE06 band gap of 0.65 eV, and band filling corrections, and plotted the results using Pymatgen.

The defect computations identify Fe vacancy on the octahedral site as a point defect with particularly low defect formation energy. For instance, the neutral Fe octahedral vacancy formation energy was computed to be -19 meV for the Fe_2O_3/Fe_3O_4 equilibrium chemical potentials. This result implies that stoichiometric Fe_3O_4 is close to the convex hull but not exactly on the convex hull (at least at the level of the theory used in these defects computations). But we also note that the computed defect formation energy is very low and falls within the error bars of these defect computations (for instance, the Materials Project's tests indicate that the standard error when comparing corrected PBE + U formation energies of metal oxides is 24 meV). Nevertheless, our computations clearly indicate that the formation of Fe vacancies on the octahedral sublattice

is thermodynamically highly favored. This is in agreement with our experimental observations as well as past studies reported in the literature. For example, a number of studies focused on studying the high-temperature equilibria of Fe₃O₄, Fe₂O₃ and oxygen indicate that at fixed oxygen pressure the iron deficiency in Fe₃O₄ is increases as temperature is lowered.^{10, 11} Furthermore, for the iron-deficient magnetite, $Fe^{3+}[Fe^{3+}_{1+2x}Fe^{2+}_{1-3x}]O^{2-}_4$ (where x is the number of iron vacancies per Fe₃O₄ in the spinel structure), there are metastable natural occurrences of all compositions up to x = 1/3.^{12, 13}

Figure S4. (*a*) Fe₃O₄ inverse spinel structure. (*b*, *c*) DFT-computed electronic band structures of Fe₃O₄. Spin up and spin down channels are shown in blue and red, respectively.

Figure S5. DFT-computed electronic band structure for Fe_3O_4 when one electron is added to the supercell. The added electron can either localize on one of the Fe^{+3} cations reducing it to a +2-oxidation state (*a*) or delocalize via the traditional n-type doping behavior, creating filled states near the conduction band edge (*b*). In each case, the spin up and spin down channels are shown in blue and red, respectively. (*c*) and (*d*) visualize the charge density associated with the bands created by the added electrons corresponding to the (*a*) and (*b*) panels, respectively.

Figure S6. DFT-computed electronic band structure of off stoichiometric Fe_3O_4 with one electron removed from the supercell. Spin up and spin down channels are shown in blue and red, respectively. As a result of the electron removal, one Fe^{+2} cation on the octahedral sublattice is oxidized to a +3-oxidation state leading to the disappearance of a band near the Fermi energy as compared to the stoichiometric case.

Figure S7. The computed formation energies of point defects in Fe_3O_4 , with the chemical potentials defined by the equilibrium with Fe_2O_3 (oxygen-rich conditions).

Calculation of magnetic dead layer. Assuming that each nanoparticle consists of magnetite core having a magnetic structure and magnetically disordered maghemite shell, the thickness of shell, e, can be calculated from the variation of the saturation magnetization, M_{sat} , with the reciprocal of the average diameter (1/d) of the particles according to equation suggested by Chen and co-workers¹⁴:

$$M_{sat} = M_{sat,bulk} \left(1 - \frac{6e}{d}\right)$$
 (eq. S1)

Figure S8. Saturation magnetization (M_{sat}) versus the reciprocal of the average diameter (1/d) of the prepared Fe₃O₄ nanoparticles.

Figure S9. Core size versus LSPR maximum wavelength.

Acid dissolution method. Composition of Fe₃O₄ NCs (Fe³⁺/Fe²⁺ ratio) was determined using a combination of previously reported literature procedures.^{15,16} The standard curve was established prior to the measurements using solutions with known Fe²⁺/Fe³⁺ ratios. Two solutions were prepared for each NC sample, one for detection of Fe²⁺ and one for the detection of total iron in solution. To prepare the stock solution, 10 mg of Fe₃O₄ NCs was boiled in concentrated hydrochloric acid until all NCs were dissolved and no precipitation was detected upon cooling. Then, 10 µL of iron-containing solution was diluted with 800 µL of water and added to HOAc-NaAc buffer (1mL), 1,10-phenanthroline (400 µL, C = 5.5 mM), and hydroxylamine hydrochloride (400 µL, 1.6 M) mixture. The prepared solution was diluted with 100 µL of water or ascorbic acid solution (C = 5.8 M) to determine Fe²⁺ or total iron, respectively. The absorbance of the above test solutions was measured at 510 nm, and the values of Fe³⁺ and Fe²⁺ were calculated using establish standard curve.

Figure S10. ⁵⁷Fe Mössbauer spectra of (a) **A-I-1**, (b) **A-I-2**, (c) **A-III-1**, and (d) **A-III-3**. Solid and dotted red lines represent components due to Fe^{3+} ions in both tetrahedral and octahedral sublattices of inverse spinel. Blue lines are due to $Fe^{2.5+}$ (average of Fe^{3+} and Fe^{2+} , couple involved in rapid exchange of electrons in the octahedral lattice). The nature of the small sextet in **A-I-1** is not certain.

Sample	D _{TEM} , nm	e, nm	Fe ²⁺ /Fe ³⁺	Fe ²⁺ /Fe ³⁺ Based on shell % volume and 100% magnetite core	Magnetite core character	LSPR, nm
		⁵⁷ Fe Moss	bauer			
		spectrom	netry			
A-I-1	5.2	0.67	0.29	0.20	reduced	1287
A-I-2	6.3	0.50	0.29	0.30	stoichiometric	1383
A-III-1	9.2	0.48	0.20	0.36	oxidized	1458
A-III-3	8.2	0.56	0.18	0.32	oxidized	1437
		Acidic diss	olution			
A-III-1	9.2	0.48	0.27	0.36	oxidized	1458
A-III-3	8.2	0.56	0.19	0.32	oxidized	1437
A-II-4	20.7	No magnetization data	0.17		oxidized	1693
A-III-4	7.3	0.50	0.45	0.375	reduced	1382
A-III-2	9.5	No magnetization data	0.11			1394

Table S2. Composition data determined by ⁵⁷Fe Mössbauer spectrometry and acidic dissolution method.

Fabrication of coupled NP/QDs systems. A saturated solution of iron nanoparticles in chloroform (150 μ L) was diluted with 150 μ L of chloroform and dispersed in 2 mL of hexane/octane mixture (9:1). The plasmonic thin films were prepared by spin-coating (200 rpm, 1 min, 3 times) of 50 μ L of prepared suspension on quartz substrate followed by annealing at 300 °C for 5 min in an inert atmosphere. The separation distance between NPs and QDs was controlled by a nanoscale spacer layer. The thickness of the spacer layer was estimated by AFM. The layer of QDs was deposited on the top the already prepared Fe₃O₄/spacer thin films by drop casting 3 μ L of QD suspension with known concentration.

Figure S11. Fluorescence decays of QDs on PMMA film (red), Fe₃O₄ NCs thin films covered with PMMA spacer layer (blue), and Fe₃O₄ NCs thin film (green). Black solid lines are fits of decay.

Figure S12. Normalized absorbance of Fe_3O_4 thin film covered with 10 nm layer of ChG spacer: GSS (blue) and GSST (green). Red dashed line corresponds to the normalized absorbance of corresponding Fe_3O_4 NPs dispersed in TCE.

Figure S15. Fluorescence decays of QDs coupled to Fe_3O_4 NC thin film separated by spacer layer (a) GSS, (b) GSST and (c) Al₂O₃. Spacer thicknesses are 2.5 nm (dark blue), 5 nm (blue), 7.5 nm (green), 10 nm (yellow), 15 nm (orange), and 20 nm (red). (d) The Purcell factor as a function of spacer thickness for GSS (red), GSST (blue), and Al₂O₃ (gray) spacer materials.

The fluorescence decays were fit with biexponential function:

$$I(t) = \int_{-\infty}^{t} IRF(t) \sum_{i=1}^{n} B_i e^{\left[-\frac{t-t'}{\tau_i}\right]} dt'$$

where τ and *B* are lifetime and amplitude, respectively.

The amplitude-weighted average fluorescence lifetimes were calculated based on the following equation:

$$< au_{ave}> = \frac{B_1 au_1 + B_2 au_2}{B_1 + B_2}$$

Further analysis of *tr*-PL data shows that both decay constants, τ_1 and τ_2 , extracted via biexponential fitting of decay curves (above), are affected by the presence of the NC layer. In general, both τ_1 and τ_2 are shorter in the presence of the NC layer in comparison with their respective control samples (i.e., in the absence of the plasmonic NC layer) (Tables S3-S5). At the same time, the contribution from the faster component, τ_1 , is significantly increased for the structures that showed the maximum spontaneous decay enhancement. According to previous work,¹⁷ τ_1 may be associated with emission from bi-exciton states, while τ_2 may result from emissive decay of excitons. In this case, the relative enhancement of τ_1 compared to τ_2 could imply that bi-excitonic emission is preferentially enhanced compared to excitonic emission. However, additional studies are needed to confirm such a conclusion.

Spacer thickness, nm	B_1	$ au_1$, ns	B_2	τ_2 , ns	<₹ave>, ns			
Control, without Fe ₃ O ₄ NC layer								
20	33.57	19.66	130.24	248.51	201.61			
15	86.847	13.04	57.718	161.33	72.24			
10	71.35	1.61	98.33	119.03	69.65			
5	45.71	5.25	59.65	206.53	119.20			
2.5	26.81	17.69	41.04	212.80	135.69			
		With Fe ₃ O ₄ N	C layer					
20	65.68	4.57	44.31	70.69	31.21			
15	402.53	3.56	145.75	39.86	13.21			
10	100.65	4.70	53.24	40.75	17.17			
7.5	65.881	5.19	107.02	29.57	20.28			
5	158.31	8.51	122.28	71.00	35.75			
2.5	766.56	0.68	68.42	24.53	2.64			

Table S3. GSS spacer

Table S4. GSST spacer

Spacer thickness, nm	B_1	$ au_1$, ns	B_2	τ_2 , ns	<7ave>, ns
	Cont	trol, without Fe ₃	O ₄ NC layer		
20	24.46	135.43	17.08	541.18	302.25

15	18.26	56.17	26.96	296.00	199.15		
10	64.30	14.81	82.82	63.05	41.97		
5	37.76	81.75	36.37	379.50	227.83		
2.5	25.22	84.33	44.02	447.49	315.20		
With Fe ₃ O ₄ NC layer							
20	70.17	12.75	63.47	116.72	62.13		
15	62.98	5.00	55.23	79.25	39.69		
10	123.54	14.64	135.98	68.23	42.72		
5	61.61	16.90	58.13	125.39	69.57		
2.5	312.35	1.86	106.05	165.66	43.38		

Table S5. AlOx spacer

Spacer thickness, nm	B_1	$ au_1$, ns	B_2	τ_2 , ns	<₹ave>, ns
		Control, with	out QDs		
20	41.17	79.95	34.662	226.77	147.06
15	24.319	42.95	57.889	285.70	213.89
10	48.60	50.24	71.68	167.62	120.19
7.5	45.644	85.99	38.003	391.74	224.90
5	75.025	60.51	74.297	245.48	152.54
2.5	95.148	42.92	101.05	186.33	116.78
		With QI)s		
20	33.894	23.32	38.595	295.04	167.99
15	85.515	41.78	122.82	158.73	110.73
10	74.83	48.64	97.39	165.98	115.00
7.5	39.36	17.57	101.26	228.87	169.72
5	53.87	16.30	110.86	129.19	92.27
2.5	187.73	13.74	163.89	96.54	52.33

References:

- Krishnamurthy, S.; Singh, A.; Hu, Z.; Blake, A. V.; Kim, Y.; Singh, A.; Dolgopolova, E. A.; Williams, D. J.; Piryatinski, A.; Malko, A. V.; Htoon, H.; Sykora, M.; Hollingsworth, J.A. PbS/CdS Quantum Dot Room-Temperature Single-Emitter Spectroscopy Reaches the Telecom O and S Bands via an Engineered Stability. *ACS Nano* 2021, *15*, 575–587.
- (2) Pool, V. L.; Klem, M. T.; Chorney, C. L.; Arenholz, E. A.; Idzerda, Y. U. Enhanced Magnetism of Fe ₃ O ₄ Nanoparticles with Ga Doping. *J. Appl. Phys.* **2011**, *109*, 07B529.
- (3) Kim, D.; Lee, N.; Park, M.; Kim, B. H.; An, K.; Hyeon, T. Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes. J. Am. Chem. Soc. 2009, 131, 454–455.
- Urso, C.; Barawi, M.; Gaspari, R.; Sirigu, G.; Kriegel, I.; Zavelani-Rossi, M.; Scotognella, F.; Manca, M.; Prato, M.; De Trizio, L.; Manna, L. Colloidal Synthesis of Bipolar Off-Stoichiometric Gallium Iron Oxide Spinel-Type Nanocrystals with near-IR Plasmon Resonance. J. Am. Chem. Soc. 2017, 139 (3), 1198–1206.
- (5) Chen, J.; Sorensen, C.; Klabunde, K. Size-Dependent Magnetic Properties o Fine Particles Synthesized by Coprecipitation. *Phys. Rev. B Condens. Matter Mater. Phys.* **1996**, *54*, 9288–9296.
- (6) Rancourt, D. G.; Ping, J. Y. Voigt-Based Methods for Arbitrary-Shape Static Hyperfine Parameter Distributions in Mössbauer Spectroscopy. *Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms* **1991**, *58*, 85–97
- (7) Boiteau, R. M.; Kukkadapu, R.; Cliff, J. B.; Smallwood, C. R.; Kovarik, L.; Wirth, M. G.; Engelhard, M. H.; Varga, T.; Dohnalkova, A.; Perea, D. E.; Wietsma, T.; Moran, J. J.; Hofmockel, K.S. Calcareous Organic Matter Coatings Sequester Siderophores in Alkaline Soils. *Sci. Total Environ.* **2020**, *724*, 138250.
- (8) Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G. Electrostatic interactions between charged defects in supercells. *Phys. Stastus Solidi B* **2011**, *248*, 1067–1076.
- (9) Broberg, D.; Medasani, B.; Zimmermann, N. E. R.; Yu, G.; Canning, A.; Haranczyk, M.; Asta, M.; Hautier, G. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators. *Comput. Phys. Commun.* **2018**, *226*, 165–179.
- (10) Smiltens, J. The Standard Free Energy of Oxidation of Magnetite to Hematite at Temperatures above 1000°. J. Am. Chem. Soc. 1957, 79, 4877–4880.
- (11) Salmon, O. N. High temperature thermodynamics of the iron oxide system. J. Phys. Chem. **1961**, 65, 550–556.
- (12) Basta, E. Z. Some mineralogical relationships in the system Fe₂O₃-Fe₃O₄ and the composition of titanomaghemite. *Econ. Geol.* **1959**, *54*, 698–719.
- (13) Ramdohr, P. The ore minerals and their intergrowth. Elsevier, 2013.
- (14) Chen, J.; Sorensen, C.; Klabunde, K. Size-Dependent Magnetic Properties of Fine Particles Synthesized by Coprecipitation. *Phys. Rev. B - Condens. Matter Mater. Phys.* 1996, 54, 9288–9296.
- (15) Jiang, C.; Yang, S.; Gan, N.; Pan, H.; Liu, H. A Method for Determination of [Fe³⁺]/[Fe²⁺] Ratio in Superparamagnetic Iron Oxide. J. Magn. Magn. Mater. 2017, 439, 126–134.
- (16) Tamura, H.; Goto, K.; Yotsuyanagi, T.; Nagayama, M. Spectrophotometric Determination of Iron(II) with 1,10-Phenanthroline in the Presence of Large Amounts of Iron(III). *Talanta* 1974, 21, 314–318.
- (17) Wang, F.; Karan, N. S.; Nguyen, H. M.; Ghosh, Y.; Sheehan, C. J.; Hollingsworth, J. A.; Htoon, H. Correlated Structural-Optical Study of Single Nanocrystals in a Gap-Bar Antenna: Effects of Plasmonics on Excitonic Recombination Pathways. *Nanoscale* 2015, 7,

9387–9393.