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Section 1: Purification of the fullerene samples. 

Synthesis and purification of the EMFs: For the synthesis of Sc3C2@C80, the arc discharge vaporization 

of composite graphite method was employed. In a typical experiment, graphite rods doped with Sc2O3 (0.8 

% wt, Toyo Tanso, Japan) were vaporized under 80 mbar of constant helium flow and a dc current of 500 

amps. The polarity of the dc current was changing after each arc. The carbon soot was collected and Soxhlet 

extracted with toluene for 48 hours. The different fullerenes were separated through HPLC. The trimetallic 

nitride endohedral metallofullerenes (TNT EMFs), Er3N@C80 and Sc3N@C80, were purchased from SES 

Research Inc. and were purified with HPLC and tested with mass spectroscopy prior to further use.  

Characterization techniques: The purification of the crude extract and the TNT EMFs was performed 

with HPLC chromatography using a Cosmosil Buckyprep M column, 20 × 250 mm (Nacalai Tesque). 

Toluene was used as the eluent phase and the flow rate was 14 ml/min for all experiments. Calibration 

curves based on Y@C82 were used to estimate the yield of the reaction procedure. The purity of the samples 

was tested through matrix-assisted laser-desorption ionization time-of-flight mass spectra (MALDI-TOF 

MS-negative ionization) that were recorded on a Bruker MALDI-TOF spectrometer using dithranol in 

either positive or negative ionization mode. UV-Visible spectra were recorded on a Jasco spectrometer in 

o-dichlorobenzene solutions.  

 

 

Section 2: Mass spectrometry. 

High performance liquid chromatography was employed for the purification of all endohedral fullerenes. 

We present a typical HPLC graph for the isolation of Sc3C2@C80 in Figure S1. The Sc3C2@C80, appears at 

a high retention time of more than 24 minutes, clearly distinguishing itself for the dimetallic counterpart 

Sc2C2@C80. The empty cage fullerenes appear in significantly shorter retention times. 
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Figure S1. HPLC graph of the crude extract, derived from the vaporization of scandium containing graphite 
rods. The peak at retention time 25-28 minutes corresponding to the Sc3C2@C80 is indicated, as also the 
peaks corresponding to other empty cage and endohedral fullerenes.   
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Figure S2. MALDI-TOF spectra of the a) Sc3C2@C80 in either positive (red) or negative (blue) ionization 
mode b) Er3N@C80 c) Sc3N@C80. 

 

Section 3: Spectroscopic characterization and band gap calculation. 

In Figure S3 we present the UV-Visible spectra (Figure S3a) for the two TNTs that were recorded in o-

dichlorobenzene solutions. The direct optical band gaps of the two trimetallic nitride endohedral 

metallofullerenes were calculated from the Tauc plots that can be seen in Figure S3b. Τhe energy of the 

transition, in eV, is plotted against (αhν)1/r. For a direct allowed transition, we consider a value of r=1/2. 

Consequently, the band gaps are calculated to be 2.466 eV for Sc3N@C80 and 2.54 eV for Er3N@C80 from 

the fitting of the Tauc plot.  
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Figure S3. UV-Visible absorbance spectra (a) and Tauc plots (b) recorded in o-dichlorobenzene solutions 
for Er3N@C80 (blue) and Sc3N@C80 (red). The direct, optical band gaps, taking into consideration a value 
for r=1/2 are: 2.54 eV for Er3N@C80 and 2.46 eV for Sc3N@C80. The values are calculated from a fitting 
on the linear regime of the Tauc plot.  

 

 

MALDI-TOF data are providing invaluable information for the formation of endohedral metallofullerenes 

species, however, they do not provide with a definite proof on the structure of the buckyball and the species 

incarcerated within. To that end, we recorded the EPR spectra and they demonstrated the unique diamond 
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shape with 22 lines that arises from three equivalent scandium nuclei. The spectra for the temperature range 

170—290 K can be seen in Figure S4. 
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Figure S4. EPR spectra of the paramagnetic Sc3C2@C80 recorded at various temperatures (170-290 K). The 
22 lines stemming from three equivalent scandium (I=7/2) nuclei demonstrate the unambiguous synthesis 
of the trimetallic carbide.  

 

 

 

Section 4: Experimental details. 

4.1. Sample preparation and experimental technique 

Samples are prepared by depositing the endohedral metallofullerene of interest on a 250-nm-thick Au film 

on a glass substrate (11 × 11 mm2, Arrandee, Germany). The gold surface is flame annealed prior to the 

molecule deposition to have clean gold reorganized in a polycrystalline (111) surface. The sample is 

afterwards allowed to cool down to room temperature and the molecules are then deposited using the drop-

casting technique. EMFs are initially in solid state (powder) and need to be diluted to get low coverages of 

the Au surface. Proceeding in several steps, we prepare a very dilute EMF solution in 1,2,4-trichlorobenzene 

(TCB) (>99%, Sigma-Aldrich) of around 10−7 − 10−8 M and place a drop on the pre-annealed Au surface 

for about three minutes. We finally blow it off with streaming nitrogen and allow the sample to dry 

overnight in ambient conditions. 
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The experimental setup employed in our experiments is a scanning tunnelling microscope (STM) operated 

in ambient conditions and at room temperature. Once the sample is mounted on the STM, it is also let to 

stabilize for around an hour to reach thermal equilibrium with the setup and minimize the thermal drift. 

Complementary, we use mechanically cut Au tips as STM probes (Goodfellow, 0.25-nm-diameter, 99.99% 

purity). The STM is a home-built setup that has been adapted to measure simultaneously the conductance 

and thermopower of nanoscale junctions.1 The major modification introduced in the standard STM setup is 

the addition of a surface mount 1 kΩ resistor on the tip support which acts as a heater for the tip, which is 

in good thermal contact with the back of the resistor. On the other, the substrate is maintained at room 

temperature 𝑇𝑇𝑐𝑐 and hence a temperature difference 𝛥𝛥𝑇𝑇 =  𝑇𝑇ℎ − 𝑇𝑇𝑐𝑐 between the tip and the sample is 

established, where 𝑇𝑇ℎ is the temperature of the tip, and 𝑇𝑇ℎ > 𝑇𝑇𝑐𝑐. Two thermocouples (placed on the heating 

resistor and on the sample) allow us to monitor the resulting ∆𝑇𝑇, which ranges from around 30 K to 40 K 

for the experiments reported here. When applying a temperature difference, we found that the temperature 

stabilizes in about 15-30 minutes and that the thermal drift increases, making it necessary to use fast imaging 

to locate the isolated molecules as an essential part of the experimental technique, as it is introduced next. 

The experimental technique employed consists mainly of three steps: scanning of the sample surface to 

localize individual molecules, by means of STM-images; connection of the molecule forming a molecular 

junction and simultaneous measurement of 𝐺𝐺 and 𝑆𝑆, and second acquisition of STM-images to monitor 

possible modifications of the molecule position. 

First, the use of STM images prior to junction formation is one of the major requirements of the experiments 

performed since it is essential to precisely know the number of molecules involved in the junction. 

Examples of these images, which also confirm the correct deposition of the EMFs on the Au surface, can 

be found in the main paper and in the next section.  

Secondly, once a single molecule is targeted, both conductance 𝐺𝐺 and thermopower 𝑆𝑆 can be simultaneously 

measured doing small voltage ramps during the approach and retraction of the STM tip with respect to the 

molecule, as described in Figure S5. During the tip motion, the bias voltage 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 applied to the sample is 

kept constant at a given value 𝑉𝑉0 = 10 mV, (plotted in blue in Figure S5a,b). Every few picometers (15 −

25 pm) the tip motion is stopped and the bias voltage is ramped between ±𝑉𝑉0 while the tip is stationary (in 

red in Figure S5a,b). These low-voltage 𝐼𝐼-𝑉𝑉 traces show linear ohmic behaviour, proving good coupling of 

the molecule to the electrodes, and when no temperature difference is applied between both STM electrodes, 

i.e. 𝛥𝛥𝑇𝑇 = 0 K, 𝐼𝐼 = 0 takes place at zero bias voltage (see Figure S5c). On the contrary, when a non-zero 

temperature difference is established between tip and sample, the 𝐼𝐼-𝑉𝑉 curves show a 𝛥𝛥𝑇𝑇-dependent voltage 

offset at zero current (see Figure S5c), which correspond to the thermovoltage of the system. 
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Figure S5. Technique for the simultaneous measurement of conductance 𝐺𝐺 and thermopower 𝑆𝑆. a,b) Tip 
displacement ∆𝑧𝑧 and applied bias voltage 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, respectively, as a function of time. The bias voltage is 
maintained at a fixed value 𝑉𝑉0 during the tip motion (in blue) and every few picometers it is swept between 
±𝑉𝑉0 while the tip is stationary (in red). c) Examples of experimental 𝐼𝐼-𝑉𝑉 traces, zooming for voltage values 
close to zero. In the presence of a temperature difference ∆𝑇𝑇 ≠ 0 K, a voltage offset 𝑉𝑉𝑡𝑡ℎ appears at zero 
current. 

 

It is important to have in mind that heating the tip translates into a temperature difference established not 

only between tip and sample but also across the tip-connecting lead, which gives rise to an additional 

thermoelectric signal that needs to be considered (see Figure S6). The total thermovoltage 𝑉𝑉𝑡𝑡ℎ measured in 

the 𝐼𝐼-𝑉𝑉 traces contains then both contributions, from the junction and from the lead. Considering the 

equivalent thermal-electric circuit of the system depicted in Figure S6, the current through the STM junction 

can be written as: 

𝐼𝐼 = 𝐺𝐺[𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑆𝑆∆𝑇𝑇 − 𝑆𝑆𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙∆𝑇𝑇] =  𝐺𝐺[𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑉𝑉𝑡𝑡ℎ] 
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where 𝐼𝐼 is the electrical current through the junction; 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and ∆𝑇𝑇 are the applied bias voltage and 

temperature difference, respectively; 𝐺𝐺 and 𝑆𝑆 are the conductance and thermopower of the junction, 

respectively; 𝑆𝑆𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙 is the thermopower of the tip-connecting lead, which in our system is a copper wire 

(thus, 𝑆𝑆𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙 = 1.83 μV/K),2 and 𝑉𝑉𝑡𝑡ℎ is the total thermovoltage, which can be written as 𝑉𝑉𝑡𝑡ℎ = (𝑆𝑆 −

𝑆𝑆𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙)∆𝑇𝑇. This is directly the 𝛥𝛥𝑇𝑇-dependent voltage offset measured at zero current with the 𝐼𝐼-𝑉𝑉 traces. In 

practice, the application of this expression allows us to measure simultaneously both the conductance and 

the thermopower: measuring 𝑉𝑉𝑡𝑡ℎ and 𝛥𝛥𝑇𝑇 the thermopower of the junction 𝑆𝑆 is straightforwardly calculated 

and, in addition and simultaneously, the slope of the 𝐼𝐼-𝑉𝑉 curve corresponds to the conductance 𝐺𝐺 of the 

junction. In each approach-retraction cycle, approximately 50-100 𝐼𝐼-𝑉𝑉 curves are typically acquired, giving 

as many values of the conductance and the Seebeck coefficient. 

 

 

 

 

 

 

 

Figure S6. Equivalent thermal-electric circuit. The STM tip is heated to a temperature 𝑇𝑇ℎ above ambient 
temperature (in red), while the substrate is maintained at ambient temperature 𝑇𝑇𝑐𝑐 (in blue), establishing a 
temperature difference ∆𝑇𝑇 =  𝑇𝑇ℎ − 𝑇𝑇𝑐𝑐 that generates a thermoelectric response both in the STM junction 
(in green) and in the tip-connecting lead (in orange). 𝑆𝑆 and 𝑆𝑆𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙 are their corresponding Seebeck 
coefficients. Other elements considered in the circuit are the bias voltage applied to the substrate (𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), 
the current flowing through the STM junction (𝐼𝐼) and its electrical conductance (𝐺𝐺).  

 

Finally, STM images of the area around the connected molecule are acquired after the junction formation 

to monitor possible modifications of the molecule position. If it remains stable after junction formation, the 

technique enables to perform further transport measurements in the very same molecule by successive 

approach-retraction cycles of the tip. 

 

4.2. STM images of EMFs on Au(111) 

STM images of the Au surface and the EMFs adsorbed on it are acquired at room temperature and in 

constant-current mode with the bias voltage 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 applied to the sample (typically several hundreds of mV, 
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between 300 and 800 mV). A commercial current-to-voltage amplifier Keithley 428 is used, with a gain of 

108 V/A, and a tunnelling current of ~1 nA is set to control the vertical piezo position and scan the surface. 

Figure 1 in the main paper and Figure S7 show representative examples of STM images of the two “new” 

EMFs investigated, i.e. Sc3C2@C80 and Er3N@C80, deposited on Au(111). STM images of Sc3N@C80 

molecules deposited on Au(111) can be found in Ref.3 Thanks to the low molecule concentration of the 

solutions prepared, we can easily localize areas on the Au surface where isolated EMFs have adsorbed, 

preferentially at monoatomic steps but also on flat terraces (Figure S7c, for example). Preferred bonding at 

step edges is to be expected since they are more reactive sites and Au atoms at these positions have more 

dangling bonds, favouring the adsorption of the electron acceptor molecules. In fact, covalent bonding of 

the EMFs is taking place, with hybridization of the molecular orbitals and the extended electronic states of 

the metal surface and a net charge transfer from the electron-rich substrate towards the molecule. Most of 

the EMFs contacted in our experiments are indeed sitting at step edges. 

 

 

 

 

 

 

 

 

 

 

Figure S7. STM-images of Sc3C2@C80 (a,b) and Er3N@C80 (c,d) molecules deposited on Au(111), showing 
adsorption of the EMFs at step edges (preferred) and flat terraces, both as isolated molecules and small 
islands. Images treated with the Gwyddion software.4   

 

In summary, STM images of EMFs deposited on polycrystalline Au substrates show stable adsorption of 

the molecules with submonolayer coverages. Despite not being able to obtain intramolecular resolution, 

molecules seem to do not suffer any bonding-induced structural damage, they are generally well anchored 
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to the metallic surface although certain tip-induced mobility is sometimes observed and they show a clear 

preference to attach to monoatomic step edges. 

 

4.3. Further examples of individual simultaneous measurements of conductance 𝑮𝑮 and 

thermopower 𝑺𝑺 for Sc3C2@C80 and Er3N@C80 single-molecule junctions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8. Examples of individual simultaneous measurements of conductance 𝐺𝐺 and thermopower 𝑆𝑆 of 
Sc3C2@C80 (a-d) and Er3N@C80 (e-h) junctions. These curves correspond to four examples of approach 
(a,c,e,g) and retraction (b,d,f,h) cycles on single-molecule junctions where the conductance 𝐺𝐺 (in red) and 
thermopower 𝑆𝑆 (in blue) are simultaneously acquired. The first Sc3C2@C80 junction in a-b presents a small 
positive thermopower and shows correlation between 𝐺𝐺 and 𝑆𝑆 changes, while the second Sc3C2@C80 
junction in c-d exhibits initially a positive thermopower that undergoes a change of sign as the tip keeps 
approaching. Finally, Er3N@C80 molecules in e-f and g-h present positive Seebeck coefficients. Two large 
abrupt jumps in 𝑆𝑆 are observed in the approach trace of the fourth junction (g-h) correlated with changes in 
𝐺𝐺: the first jump in 𝑆𝑆 is correlated with the rapid increase in 𝐺𝐺 signalling contact-formation and the second 
one is correlated with a small jump down in 𝐺𝐺 and a subtle change in the slope, possibly indicating local 
atomic rearrangements in the tip. The temperature difference ∆𝑇𝑇 is indicated in each measurement and the 
portion of 𝐺𝐺 and 𝑆𝑆 corresponding to the contact regime is highlighted in yellow. 
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4.4. 𝑮𝑮, 𝑺𝑺, and 𝑮𝑮𝑺𝑺𝟐𝟐 1D histograms for single-molecule junctions 

 

Figure S9. Conductance 𝐺𝐺, thermopower 𝑆𝑆 and power factor 𝐺𝐺𝑆𝑆2 and |𝐺𝐺𝑆𝑆|𝑆𝑆 1D histograms of the 
monomers of EMFs and C60. a-d) Histograms built with all the data from the 𝐼𝐼-𝑉𝑉 curves measured during 
the complete approach of the tip, from the noise level until close to the metallic contact. e-h) Histograms 
built only with first-contact values, i.e., within 0.1 nm after junction formation. Insets in c-d and g-h zoom 
into the details of the power factor data presented in the main panel. |𝐺𝐺𝑆𝑆|𝑆𝑆 1D histograms (d and h) are 
shown to highlight the asymmetry due to positive and negative thermopower values. Panels e), f) and g) 
are those shown in Figures 3 and 6a. 
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Section 5: Theoretical details. 

5.1. Frontier orbitals of the EMFs molecules and the C60 

Table S1 shows the frontier orbitals of the studied molecules, obtained using the DFT code SIESTA.5 The 

optimum geometries of the isolated molecules were obtained by relaxing the molecules until all forces on 

the atoms were less than 0.05 eV/Å. A double-zeta plus polarization orbital basis set, norm-conserving 

pseudopotentials were utilised, an energy cutoff of 200 Rydbergs defined the real space grid and the local 

density approximation (LDA) was chosen to be the exchange correlation functional. We also computed 

results using GGA and found that the resulting transmission functions were comparable with those obtained 

using LDA.6-8 

Table S1 shows the theoretical frontier orbitals of the isolated molecules. DFT tends to underestimate the 

HOMO-LUMO gap,9, 10 which is why the calculated gaps in Table S1 are smaller than the optically-

measured gaps in Figure S3.   

Table S1. Comparison between the frontier molecular orbitals of C60 and EMFs in the gas phase. 

Molecule EF (eV) HOMO-1 HOMO LUMO LUMO+1 E (eV) 

C60 -4.13 

 

  

 HOMO-1 = -4.80 

HOMO = -4.80 

LUMO = -3.13 

LUMO+1 = -3.13 

Sc3N@C80 

 
-3.58 

 

 

 

 
HOMO-1 = -4.45 

HOMO = -4.35 

LUMO = -2.83 

LUMO+1 = -2.55 

Sc3C2@C80 -3.89 

 

  
 HOMO-1 = -4.39 

HOMO = -4.36 

LUMO = -3.89 

LUMO+1 = -2.97 

Er3N@C80 -3.91 

  

 

 

HOMO-1 = -3.95 

HOMO = -3.94 

LUMO = -3.84 

LUMO+1 = -3.74 
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5.2. Axes and rotation modes of EMFs 

There are an infinite number of inequivalent orientations of the metallic moiety relative to the fullerene 

cage. Here we consider a selection of rotations about high-symmetry axes. Figure S10 shows four axes of 

rotation θ, Φ, α and 𝛽𝛽 considered below. Figure S11 shows how these axes pass through the metallic 

moieties. For each of the four axes of rotation, we investigate how the total energy varies with angle of 

rotation, both in presence and absence of the gold substrate. For each of these four axes, we consider one 

mode of rotation in the gas phase and three modes of rotation on a substrate. 

In the gas phase, we consider rotation of the metallic moiety relative to a fixed fullerene cage. For this 

rotational mode, rotations about the 𝛽𝛽 and Φ axes are equivalent, so in total we consider 3 distinct axes of 

rotation.  In the presence of the gold substrate, we consider three modes of rotation about each of the four 

axes: rotation of the bare metallic moiety (in the absence of the cage), rotation of the metallic moiety in the 

presence of a fixed cage and rotation of both the metallic moiety and cage, such that their relative orientation 

is fixed. This means that in total, on a substrate, we consider 12 distinct cases (4 axes x 3 modes of rotation).  

 

 

 

 

 

 

 

 

Figure S10. Illustration of the four rotation axes: θ, Φ are horizontal axes,  α and β are vertical axes. 
This Figure shows how the axes pass through the Ih-C80 cage + metallic moiety.  
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Figure S11. Illustration of how the four rotation axes θ, Φ,  α and β, pass through the metallic moiety. 

 

In what follows, the same symbol (e.g. 𝜃𝜃) is used to label both the rotation axis and the angle of rotation 
about the axis. 

 

 

5.3. Distance between the metallic moiety and the Au-substrate 

Here, we calculate the distance between the metallic moiety and the gold substrate, while we rotate the 

metallic moiety on the substrate as shown in Figs S10 and S11. The distance 𝑑𝑑 is defined to be the smallest 

vertical distance between the top-most plane of the Au substrate and the closest metal atom. Fig. S12 

illustrates how 𝑑𝑑 varies during rotations about the four different rotation axes θ, Φ, α and β,  and shows that 

rotation about θ causes the largest distance variation (black and grey curves), followed by rotation about Φ 

(brown and yellow curves). In contrast, by symmetry, rotation about α and β causes no change in 𝑑𝑑 (light 

and dark green or red and pink curves, respectively).   

To quantify this variation, Table S2 shows the standard deviation σ of the distance 𝑑𝑑, associated with 

rotations about the four axes. This shows that the standard deviations σ follow the order  𝜎𝜎𝜃𝜃> 𝜎𝜎Φ> 𝜎𝜎𝛼𝛼 =

𝜎𝜎𝛽𝛽. 
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Figure S12. Distance variation between the metallic moiety and the gold substrate in four different rotation 

axes θ, Φ, α and β of Sc3C2@C80, and Sc3N@C80 (Note: Sc3N@C80 and Er3N@C80 have identical results, 

for clarity we present only Sc3N@C80 results) 

 

 

Table S2. Standard deviations σ of the distance 𝑑𝑑, associated with rotations about the four axes, for the 
three EMFs Sc3C2@C80, Sc3N@C80 and Er3N@C80. In the latter case, the distance 𝑑𝑑 is defined to be the 
smallest vertical distance between the top-most plane of the Au substrate and the closest Er atom. 

 𝜎𝜎𝑙𝑙 (Å)   
EMF σ𝜃𝜃 𝜎𝜎Φ 𝜎𝜎𝛼𝛼 𝜎𝜎𝛽𝛽 

Sc3C2@C80 1.47 1.09 0 0 
Sc3N@C80 1.43 0.95  0 0 
Er3N@C80 1.43 0.95  0 0 

  

 

5.4. Binding energies of EMFs on a gold surface  

To calculate the optimum binding distance for EMFs between the gold (111) surface and the EMF, we use 

DFT, combined with the counterpoise method, which removes basis set superposition errors (BSSE). As 

shown by the example of Sc3C2@C80 in Figure S13, the distance 𝑧𝑧 is defined as the distance between the 

Au surface and the nearest C atom of the C80 cage (see the white double-arrow on the right panel of Figure 

S13).  
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The ground state energy of the total system is calculated using SIESTA5 and is denoted 𝐸𝐸𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴. Here the gold 

leads consist of 3 layers of 25 atoms. The Sc3C2@C80 molecule is defined as monomer A and the gold 

electrodes as monomer B. The binding energy of each molecule is then calculated in a fixed basis, which 

is achieved through the use of ghost atoms in SIESTA. Hence the energy of the isolated Sc3C2@C80 in the 

presence of the fixed basis is defined as 𝐸𝐸𝐴𝐴
𝐴𝐴𝐴𝐴 and for the isolated gold is 𝐸𝐸𝐴𝐴

𝐴𝐴𝐴𝐴. The energy difference (Δ(𝑧𝑧)) 

between the isolated entities and their total energy when placed a distance 𝑧𝑧 apart is then calculated using 

the following equation:  

As shown by the Figure S13, the equilibrium distance for Sc3C2@C80, corresponding to the minimum 

energy difference, is found to be approximately 2.5 Å, which is comparable with a value of 2.4 Å reported 

in Ref. 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure S13. Sc3C2@C80 on a gold surface (Right panel). Energy difference of Sc3C2@C80 /gold complex as 
a function of molecule-gold distance. The equilibrium distance corresponding to the energy minimum is 
found to be approximately 2.5 Å (Left panel).  
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5.5. Gas phase energy barriers to rotation for Sc3C2, Sc3N and Er3N within a Ih-C80 cage 

In this section, the metallic moieties Sc3C2, Sc3N or Er3N are rotated about horizontal axes θ and Φ  and 

about a vertical axis α using equation (S2) as shown in Figure S14. Following equation (S1), the angle-

dependent energy differences Δ(θ),  Δ(Φ) and  Δ(α) are defined to be 

  

 

Figure S14. (a): Horizontal rotation axis used to compute Δ(θ), (b): Horizontal rotation axis used to 
compute Δ(Φ), (c): Vertical rotation axis used to compute  Δ(α), (Sc3C2@C80 shown here as an example).  

 

Figure S15 shows the gas-phase energy differences Δ(θ) of Sc3C2@C80, Sc3N@C80 and Er3N@C80 

EMFs as a function of the rotation angle  θ of the Sc3C2, Sc3N and Er3N inside the cages. This shows that 

the energy barrier to rotation about this horizontal axis  is approximately 400, 300 and 130 meV 

respectively, and that the Sc3C2, Sc3N and Er3N within the fullerene cage have preferred orientations θ of 

approximately 0°,  190° and 360°. The energy barrier to rotation Φ is 350, 250 and 100 meV respectively, 

and therefore the moieties Sc3C2, Sc3N, Er3N have preferred orientations of Φ ≈ (0°, 110°, 180°, 210°, 

270° and 360°), (10°, 95°, 200°, 280° and 340°) and (0°, 120°, 250° and 350°). The energy barrier to 

rotation α is 300, 150 and 60 meV respectively, and therefore the moieties Sc3C2, Sc3N, Er3N have 

preferred orientations of α ≈ (0°, 75°, 160°, 240° and 320°), (0°, 75°, 100°, 150°, 200° 250°, 300°  

and 350°) and (0°, 80°, 150°, 225°, 320°and 360°). It is clear then that the energy barriers follow the 

Δ(θ) = 𝐸𝐸𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴(θ) − 𝐸𝐸𝐴𝐴

𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐴𝐴
𝐴𝐴𝐴𝐴 

Δ(Φ) = 𝐸𝐸𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴(Φ) − 𝐸𝐸𝐴𝐴

𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐴𝐴
𝐴𝐴𝐴𝐴 

Δ(α) = 𝐸𝐸𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴(α) − 𝐸𝐸𝐴𝐴

𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐴𝐴
𝐴𝐴𝐴𝐴 

 (S2) 
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order θ >  Φ >  𝛼𝛼 for Sc3C2@C80, Sc3N@C80 and Er3N@C80 EMFs. Similarly, the energy barriers 

follow the order Sc3C2@C80 > Sc3N@C80 > Er3N@C80, These results are summarised in Table S3 and 

Table 2 in the main paper.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S15. Left panels: The energy difference Δ(θ) as a function of rotation angle θ of Sc3C2, Sc3N and 

Sc3N within the fixed Ih-C80 cage. Right panels: The energy differecne Δ(Φ, α) as a function of rotation 
angles Φ and α (yellow and green respectively), of Sc3C2, Sc3N and Sc3N within the fixed Ih-C80 cage.  The 
energy barriers ΔE(θ) to rotation about θ (obtained from the difference between the maxima and minima 
of Δ(𝜃𝜃)) are 400, 300 and 130 meV respectively, and the moieties Sc3C2, Sc3N, Er3N have preferred 
orientations of θ ≈ 0°, 190° and 360°, corresponding to the minima of Δ(𝜃𝜃). The energy barriers ΔE(Φ) 
to rotation about Φ are 350, 250 and 100 meV respectively, and therefore the moieties Sc3C2, Sc3N, Er3N 
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have preferred orientations of Φ ≈ (0°, 110°, 180°, 210°, 270° and 360°), (10°, 95°, 200°, 280° 

and 340°) and (0°, 120°, 250° and 350°). The energy barriers to rotation about α are 
300, 150 and 60 meV respectively, and therefore the moieties Sc3C2, Sc3N, Er3N have preferred 
orientations of α ≈ (0°, 75°, 160°, 240° and 320°), (0°, 75°, 100°, 150°, 200° 250°, 300°  
and 350°) and (0°, 80°, 150°, 225°, 320°and 360°). Sc3C2@C80, Sc3N@C80 and Er3N@C80 top to 
bottom.  

 

Table S3. Gas phase energy barriers ΔE(θ), ΔE( Φ), ΔE( α) associated with rotations about θ, Φ, α of 
Sc3C2, Sc3N and Er3N within the fixed Ih-C80 cage, along with the preferred orientations angles for the 
three rotation axes.   

EMF ΔE(θ) 
(meV) 

Preferred 
orientations (θ) 

ΔE(Φ) 
(meV) 

Preferred 
orientations (Φ) 

ΔE(α) 
(meV) 

Preferred 
orientations (α) 

Sc3C2@C80 400 0°, 190° and 360° 350 0°, 110°, 180°, 210°, 
270° and 360° 

300 0°, 75°, 160°, 240° 
and 320° 

Sc3N@C80 300 0°, 190° and 360° 250 10°, 95°, 200°, 280° 

and 340° 
150 0°, 75°, 100°, 150°, 

200° 250°, 300°  
and 350° 

Er3N@C80 130 0°, 190° and 360° 100 0°, 120°, 250° and 350° 60 0°, 80°, 150°, 
225°, 320°and 360° 

 

 

Table S3 shows the energy barrier ΔE(θ) for Er3N inside the C80 cage is of order 130 meV, which means 

that the Er3N cluster rotates more easily than the scandium-based moieties, Sc3N and Sc3C2. Table S3 also 

shows that the barrier to rotation about a vertical axis ΔE(α) is even lower, at approximately 60 meV. 

Figure S16 shows a comparison between the Er3N and Sc3C2 moieties. 

 

 

 

 

 

 

 

Figure S16. Geometries of the symmetric Er3N and Sc3N (left panel) and asymmetric Sc3C2 (right panel). 
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5.6. Energy barriers to rotation for endohedral fullerenes on a gold (111) surface 

Having discussed barriers to rotation in the gas phase, we now calculate the energy Δ(θ) when the whole 

EMF (cage plus metallic moiety) is rotated in the vicinity of a gold (111) surface, at various distances 𝑧𝑧 

relative to the surface. As an example, the rotation axis 𝜃𝜃 is shown in Figure S17 along with the definition 

of the distance 𝑧𝑧 of the cage relative to the Au surface. 

 

 

 

 

 

 

 

 

 

Figure S17. Illustration of the rotation axis 𝜃𝜃 and the Au-C80 distance (𝑧𝑧) of Sc3C2@C80 used to compute 
the results in Figures S18 and S19. 

 

For each of Sc3N@C80, Sc3C2@C80 and Er3N@C80 , Figure S18 shows the energy Δ(θ) obtained at different 

Au-C80 distances  𝑧𝑧, starting from the optimum distance 𝑧𝑧 = 2.5 Å. At each distance 𝑧𝑧, Δ(θ) is computed for 

values of θ ranging from 0 to 2𝜋𝜋. At the optimum value z, the three black curves show that Er3N@C80 

possesses the smallest rotation barrier (ΔE(θ) = 0.1 eV), whereas Sc3C2@C80 and Sc3N@C80 possess 

energy barriers to rotation of ΔE(θ) = 0.6 eV and 0.3 eV, respectively. All those barriers decrease with 

increasing distance 𝑧𝑧, until they vanish at large 𝑧𝑧 (which is approximately equivalent to the gas phase of the 

whole EMF). The three green curves in Figure S18 show the corresponding energies obtained by rotating 

the metallic moieties alone in the vicinity of a gold surface in the absence of the C80 cage, at z = 2.5 Å. This 

shows that for bare Sc3C2 and Sc3N (i.e. in the absence of the cage) the rotational energy barriers are slightly 

smaller and are negligible for the bare Er3N. 
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Figure S18. Rotational energy barriers of the three EMFs on a gold surface (Sc3C2@C80, Sc3N@C80 and 
Er3N@C80, respectively) computed at different distances 𝑧𝑧 from the surface, for the rotation axis θ. The 
energy barriers to rotation are of the order 0.6, 0.3 and 0.1 eV at 𝑧𝑧 = 2.5 Å and tend to zero for large 𝑧𝑧 (black 
lines). The green curves show the energy barriers to rotation for the three bare metallic moieties near a gold 
surface, at 𝑧𝑧 = 2.5 Å, in the absence of C80.  
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In the above calculations, the whole EMF or just the bare metallic cluster were rotated in the vicinity of a 

gold substrate. As a separate check on the energy barriers, we now keep the cage at a fixed orientation and 

compute the energy Δ(θ, z) versus 𝑧𝑧 for rotation angles θ of the metallic cluster inside the cage, which 

correspond to the energy minima of Table S3. For Sc3C2, (Figure S19a) the four different angles used are 

 θ =  0°, 90°, 180°, 270°. For Sc3N (Figure S19b), the three different angles are θ = 0°, 90°, 180°. The 

differences between the energy minima of these plots match the results of the middle panel of Figure S18. 

These results show that Sc3C2 possesses the highest barrier, in agreement with the top panel of Figure S18. 

For Er3N, (Figure S19c) three different angles are used θ =  0°, 90°, 180°. This shows that the energy 

barrier is relatively small and in agreement with the bottom panel of Figure S18.  
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Figure S19. The energy difference Δ(𝑧𝑧) as a function of the distance z for different orientations of the 
metallic clusters inside the cage a, b and c correspond to Sc3C2@C80, Sc3N@C80, and Er3N@C80, 
respectively. 
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We now repeat the calculations shown in Figure. S18 using the different rotation axes θ, Φ, 𝛼𝛼 and β on the 

Au substrate as shown in Figure S20. We calculate the energies Δ(θ), Δ(Φ), Δ(𝛼𝛼), Δ(β) when the whole 

EMF (cage plus metallic moiety) is rotated in the vicinity of a gold (111) surface.  

 

 

 

 

 

 

 

 

 

 

Figure S20. Illustration of the rotation axes and the Au-C80 distance (𝑧𝑧), used to compute the results in 
Figure S21.   

 

Figure S21 shows the binding energy is rather sensitive to rotation about the θ and Φ axes and are relatively 

insensitive to rotation about axes α and β. Consequently the energy barriers to rotation follow the order 

ΔE(𝜃𝜃) >  ΔE(𝛷𝛷) >  ΔE(𝛼𝛼) >  ΔE(𝛽𝛽). This ordering illustrates a rather intuitive structure-function 

relation, because it is correlated with the standard deviations σ of Table S2, which follow the order  𝜎𝜎𝜃𝜃> 

𝜎𝜎Φ> 𝜎𝜎𝛼𝛼 = 𝜎𝜎𝛽𝛽. This shows that large variations in the distance between the metal atom and the 

substrate lead to large variations in the binding energy and larger energy barriers to rotation, 

whereas the negligible variations in the distance associated with the 𝛼𝛼 and 𝛽𝛽 axes lead to much 

smaller energy barriers. 
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Figure S21. Rotational energy barriers of the three EMFs onto a gold surface (Sc3C2@C80, Sc3N@C80, and 
Er3N@C80, respectively) as a function of rotation and distance to the surface in four rotational axes 
θ, Φ, α and β. The energy barrier to rotation (β-axes) is of the order of 0.25, 0.1 and 0.04 eV at 𝑧𝑧 = 2.5 Å 
and tends to zero for large 𝑧𝑧 (red lines); for the energy barrier to rotation (θ, Φ, α and β axes) see Figure S22. 
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5.7. Spin-dependent transport calculations for different rotation angles (𝛉𝛉) about a horizontal axis  

Figure S22 shows the definition of the orientation angle of the Sc3C2@C80 molecule from θ = 0⁰ to 90⁰. 

Figure S23 shows an example of the spin-dependent transmission coefficients T(E) for the optimum 

geometry (60⁰) shown in Figure S22. These reveal that the calculated transmission for spin-up (𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)) 

and spin-down (𝑇𝑇𝑙𝑙𝑑𝑑𝑑𝑑𝑛𝑛(𝐸𝐸))  show that the resonance is split as expected due to the charge transfer from the 

metallic moiety to the cage, which positions the resonance close to the Fermi energy. The total transmission 

is then given by   𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)
2

 as shown in Figure S23. 

 

 

 

 

 

 

 

 

 

Figure S22. Sc3C2@C80 between gold surfaces. The orientation of the Sc3C2@C80 molecule with respect to 
the gold leads corresponds to the defined angle (a) θ = 0°, (b) θ = 90°. (a and b): a view in which the 
rotation axis is perpendicular to the plane of the paper, (c): The horizontal rotation axis θ.  
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Figure S23. Spin-polarised transmission coefficients 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸), 𝑇𝑇𝑙𝑙𝑑𝑑𝑑𝑑𝑛𝑛(𝐸𝐸) and 𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)
2

, for 
the binding configuration of 60o orientation θ of Sc3C2@C80 and z = 2.5 Å. The three curves represent the 
spin-up, spin-down and the average of them: blue, red and black curves, respectively.     

 

Figure S24 shows the average transmission coefficients for different orientations of Sc3C2@C80 (see Figure 

S22). Similarly, Figure S25 shows the average transmission coefficients for 60 different orientations of 

Sc3N@C80. In contrast, the transmission coefficient of C60 is spin-independent. By comparing Figures S24 

and S25, one can notice the fluctuations in the Sc3C2@C80 transmission curves are larger than those of the 

Sc3N@C80 curves. 
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Figure S24. Spin-polarised transmission coefficients, 𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)
2

, for the 60 binding 
configurations of different orientations θ for Sc3C2@C80, and 𝑧𝑧 = 2.5 Å.    
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Figure S25. Spin-polarised transmission coefficients, 𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)
2

, for the 60 binding 
configurations of different orientations θ for Sc3N@C80, and 𝑧𝑧 = 2.5 Å. 

 

5.8. Calculated thermopower as a function of orientation in the horizontal rotation axis (𝛉𝛉)  

To calculate the thermopower of these molecular junctions, it is useful to introduce the non-normalised 

probability distribution 𝑃𝑃(𝐸𝐸) defined by 

where 𝑓𝑓(𝐸𝐸) is the Fermi-Dirac function and 𝑇𝑇(𝐸𝐸) is the transmission coefficients and whose moments 𝐿𝐿𝑏𝑏 

are denoted as follows 

where 𝐸𝐸𝐹𝐹 is the Fermi energy. The Seebeck coefficient, 𝑆𝑆, is then given by  

 𝑃𝑃(𝐸𝐸) = −𝑇𝑇(𝐸𝐸)
𝑑𝑑𝑓𝑓(𝐸𝐸)

𝑑𝑑𝐸𝐸
  (S3) 

 𝐿𝐿𝑏𝑏 = � 𝑑𝑑𝐸𝐸𝑃𝑃(𝐸𝐸)(𝐸𝐸 − 𝐸𝐸𝐹𝐹)𝑏𝑏  (S4) 
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where 𝑒𝑒 is the electronic charge. 

 

Note that in ref [75] of the main manuscript, equation (50), contains a typographical error and is not the 
formula evaluated by the Gollum code. The formula evaluated by Gollum is 

 𝑆𝑆𝑙𝑙(𝑇𝑇) = −1
𝑙𝑙𝑇𝑇

𝐿𝐿1
L0

     

where     𝐿𝐿𝑏𝑏 = ∫ 𝑑𝑑𝐸𝐸𝑃𝑃(𝐸𝐸)(𝐸𝐸 − 𝐸𝐸𝐹𝐹)𝑏𝑏 

and 

𝑃𝑃(𝐸𝐸) = −𝑇𝑇(𝐸𝐸)
𝑑𝑑𝑓𝑓(𝐸𝐸)

𝑑𝑑𝐸𝐸
 

In this expression, 𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)
2

, where 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸) and 𝑇𝑇𝑙𝑙𝑑𝑑𝑑𝑑𝑛𝑛(𝐸𝐸) are transmission coefficients for 
the separate spin channels and it is assumed that there is no spin-flip scattering. 

 This equation describes the linear response regime and is consistent with Onsager reciprocal relations. 
 

Figures S26 and S27 show the average Seebeck coefficient 𝑆𝑆 evaluated at room temperature for different 

orientation angles of θ for Sc3C2@C80 and Sc3N@C80. 

 𝑆𝑆(𝑇𝑇) = −
1

𝑒𝑒𝑇𝑇
𝐿𝐿1

𝐿𝐿0
  (S5) 
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Figure S26. Seebeck coefficient S as a function of Fermi energy at 60 different orientations angles θ of 
Sc3C2@C80, for a tip-substrate distance of 2.5 Å. 
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Figure S27. Seebeck coefficient S as a function of Fermi energy at 60 different orientations angles θ of 
Sc3N@C80. 𝑆𝑆 versus Fermi energy at different orientation angles θ for a tip-substrate distance of 2.5 Å.   

 

 

 

 

 

 

 

5.9. Spin-dependent transport calculations for different orientations (𝜱𝜱) about a horizontal rotation 

axis  

In this section, we repeat the calculations described in section 5.7, but using the horizontal rotation axis 

(𝛷𝛷), as shown in Figure S28. As expected the fluctuations in the transmission coefficients are smaller when 
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the EMF rotates about the 𝛷𝛷 axis, because the variation in the distance between the metallic part Sc3C2/ 

Sc3N and the cage C80 is smaller compared to rotation in 𝜃𝜃 axis as shown in Figures. S29-S30.  

 

 

 

 

 

 

 

 

 

Figure S28. Sc3C2@C80 between gold surfaces. (a-b): The orientation of the Sc3C2@C80 molecule with 
respect to the gold leads. (c): The horizontal rotation axis Φ.   
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Figure S29. Spin-polarised transmission coefficients, 𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)
2

, for the 60 binding 
configurations of different orientations Φ of Sc3C2@C80, and 𝑧𝑧 = 2.5 Å.    
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Figure S30. Spin-polarised transmission coefficients, 𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)
2

, for the 60 binding 
configurations of different orientations Φ of Sc3N@C80, and 𝑧𝑧 = 2.5 Å.    

 

 

 

5.10. Calculated thermopower as a function of orientation in the horizontal rotation axis (𝚽𝚽)  

Figures S31 and S32 show the average Seebeck coefficient 𝑆𝑆 evaluated at room temperature for different 

orientation angles of Φ for Sc3C2@C80 and Sc3N@C80. 
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Figure S31. Seebeck coefficients S as a function of Fermi energy at 60 different orientation angles Φ of 
Sc3C2@C80, for a tip-substrate distance of 2.5 Å. 
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Figure S32. Seebeck coefficients 𝑆𝑆 as a function of Fermi energy at 60 different orientation angles Φ of 
Sc3N@C80 for a tip-substrate distance of 2.5 Å.   

 

 

5.11. Spin-dependent transport calculations in the vertical rotation axis (𝜶𝜶) 

In this section, we repeat the calculations described in section 5.7, using rotation angles about the vertical 

rotation axis (𝛼𝛼), as shown in Figure S33. As expected, compared to the rotations about the 𝜃𝜃 axis, Figures 

S34 and S35 show that the fluctuations in the transmission coefficients are smaller when the EMF rotates 

about this vertical axis, because the rotation causes a smaller variation in the distance between the metallic 

part Sc3C2/Sc3N and the cage C80. Since the rotation in this axis (𝛼𝛼), has small effect on the transmission 

coefficient curves, Figures S36 and S37 show that the Seebeck coefficient S does not show strong 

fluctuations (see next section). 
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Figure S33. Sc3C2@C80 between gold surfaces. (a-b): The orientation of the Sc3C2@C80 molecule with 
respect to the gold leads. (c): The vertical rotation axis α.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S34. Spin-polarised transmission coefficients, 𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)
2

, for the 60 binding 
configurations of different orientations α of Sc3C2@C80, and 𝑧𝑧 = 2.5 Å.    
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Figure S35. Spin-polarised transmission coefficients, 𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)
2

, for the 60 binding 
configurations of different orientations α of Sc3N@C80, and 𝑧𝑧 = 2.5 Å.    

 

 

 

5.12. Calculated thermopower as a function of orientation in the vertical rotation axis (𝛂𝛂)  

Figures S36 and S37 show the average Seebeck coefficient 𝑆𝑆 evaluated at room temperature for different 

orientation angles of α for Sc3C2@C80 and Sc3N@C80. 
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Figure S36. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles α of 
Sc3C2@C80, for a tip-substrate distance of 2.5 Å. 
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Figure S37. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles α of 
Sc3N@C80, for a tip-substrate distance of 2.5 Å. 

 

 

5.13. Spin-dependent transport calculations in the vertical rotation axis (𝜷𝜷) 

In this section, we repeat the same calculations described in section 5.7, using the vertical rotation axis (𝛽𝛽), 

as shown in Figure S38. As expected, the difference in the transmission coefficients is the smallest when 

the EMF rotates in vertical axis, and this is due to the fact that the distance between the metallic part 

Sc3C2/Sc3N and the cage C80 is kept the same. Figures S39 and S40 show small effect in the transmission 

curves while rotating in vertical axis (𝛽𝛽), unlike in the horizontal axes 𝜃𝜃 and 𝛷𝛷. Since the rotation in this 

axis (𝛽𝛽) has the smallest effect on the transmission coefficient curves one would expect the Seebeck 

coefficient 𝑆𝑆 to be approximately similar for all rotation angles (see Figures S41 and S42 in the next 

section).  
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Figure S38. Sc3C2@C80 between gold surfaces. (a-b): The orientation of the Sc3C2@C80 molecule with 
respect to the gold leads. (c): The vertical rotation axis β.   

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S39. Spin-polarised transmission coefficients, 𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)
2

, for the binding 
configurations of differnt orientations β of Sc3C2@C80, and 𝑧𝑧 = 2.5 Å. 
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Figure S40. Spin-polarised transmission coefficients, 𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑢𝑢𝑢𝑢(𝐸𝐸)+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)
2

, for the binding 
configurations of differnt orientations β of Sc3N@C80, and z = 2.5 Å.   

 

 

5.14. Calculated Seebeck coefficient as a function of orientation in the vertical rotation axis (𝛃𝛃)  

Figures S41 and S42 show the average Seebeck coefficient 𝑆𝑆 evaluated at room temperature for different 

orientation angles of β for Sc3C2@C80 and Sc3N@C80. 
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Figure S41. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles β of 
Sc3C2@C80 for a tip-substrate distance of 2.5 Å. 
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Figure S42. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles β of 
Sc3N@C80 for a tip-substrate distance of 2.5 Å. 
   

 

5.15. Spin-independent transport calculations of C60  

In this section, we repeat the same calculations described in section 5.7, but for an empty cage C60. Since 

C60 has no metallic atoms there is no need for spin-dependent calculations. As expected, the transmission 

coefficients are almost independent of the rotation angle about a vertical or horizontal axis, because the 

distance between the carbon atoms of the cage and Au-electrodes are almost unchanged by such rotations.  

Figure S43 shows no significant effect in the transmission curves while rotating about vertical or horizontal 

axis. Since the rotation has a negligible effect on the transmission coefficient curves one would expect the 

Seebeck coefficient 𝑆𝑆 to be approximately similar for all rotation angles (see Figure S44). It is worth 

mentioning, due to the absence of the extra resonance caused by the metallic moiety (C60 is an empty cage), 

that the Seebeck coefficient S does not switch sign under rotation and is negative as shown in dashed-black 

square of Figure S44.      
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Figure S43. Spin-nonepolarised transmission coefficients, 𝑇𝑇(𝐸𝐸), for 60 binding configurations and, in 
different orientations around θ, 𝛷𝛷, 𝛽𝛽  axes of C60, and 𝑧𝑧 = 2.5 Å.    
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Figure S44. Seebeck coefficient S as a function of Fermi energy at 60 different orientations around 
θ, 𝛷𝛷, 𝛽𝛽  axes of C60. 𝑆𝑆 versus Fermi energy at different orientation angles for a tip-substrate distance of 2.5 
Å.   

 

5.16. Standard deviation σ of 𝑻𝑻(𝑬𝑬) of EMFs and C60 in four different rotation axes 

Table S4 contains the standard deviations σ (see Equation S6) of the transmission coefficient 𝑇𝑇(𝐸𝐸), in four 

different rotation axes θ, Φ, 𝛼𝛼 and β, for two EMFs Sc3N@C80 and, Sc3C2@C80 and the C60 fullerene. The 

standard deviation σ of the four axes follows 𝜎𝜎𝜃𝜃> 𝜎𝜎Φ> 𝜎𝜎𝛼𝛼> 𝜎𝜎𝛽𝛽 for Sc3N@C80 and Sc3C2@C80. This order 

is clearly shown in the transmission coefficient Figures S24-S43, whereas σ of the vertical and horizontal 

rotation axes are approximately equal (𝜎𝜎𝜃𝜃≈ 𝜎𝜎𝛼𝛼) for C60. 
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Similarly, Table S5, contains the standard deviations σ of the Seebeck coefficient 𝑆𝑆 for four different 

rotation axes θ, Φ, 𝛼𝛼 and β, for two EMFs Sc3N@C80, Sc3C2@C80 and C60 fullerene. The standard deviation 

σ of the four axes follows 𝜎𝜎𝜃𝜃> 𝜎𝜎Φ> 𝜎𝜎𝛼𝛼> 𝜎𝜎𝛽𝛽 for Sc3N@C80 and Sc3C2@C80. This order is clearly shown in 

the Seebeck coefficient plots (Figures S26-S44), whereas for C60, σ of the vertical and horizontal rotation 

axes are approximately equal (𝜎𝜎𝜃𝜃 ≈ 𝜎𝜎𝛼𝛼). 

 

 Table S4. Standard deviations σ of 𝑇𝑇(𝐸𝐸) in four different rotation axes θ, Φ, 𝛼𝛼 and β, for two EMFs 
Sc3N@C80, Sc3C2@C80 and C60 fullerene. Energy ranges (0.18 to -0.6), (0.18 to -0.38) and (0.0 to -0.5) eV 
of Sc3N@C80, Sc3C2@C80 and C60. 

 𝑇𝑇(𝐸𝐸)  
Molecule σ𝜃𝜃 𝜎𝜎Φ 𝜎𝜎𝛼𝛼 𝜎𝜎𝛽𝛽 Order 

Sc3N@C80 1.374e-01 1.086e-01 1.045e-01 2.411e-02 𝜎𝜎𝜃𝜃> 𝜎𝜎Φ> 𝜎𝜎𝛼𝛼> 𝜎𝜎𝛽𝛽 
Sc3C2@C80 2.028e-01 1.887e-01 1.406e-01 3.158e-02 𝜎𝜎𝜃𝜃> 𝜎𝜎Φ> 𝜎𝜎𝛼𝛼> 𝜎𝜎𝛽𝛽 

C60 7.256e-02 == 4.873e-02 == 𝜎𝜎𝜃𝜃≈ 𝜎𝜎𝛼𝛼 
  

Table S5. Standard deviations σ of  𝑆𝑆 in four different rotation axes θ, Φ, 𝛼𝛼 and β, for two EMFs Sc3N@C80, 
Sc3C2@C80 and C60 fullerene. 

 𝑆𝑆 (µV/K)  
Molecule 𝜎𝜎𝜃𝜃 𝜎𝜎Φ 𝜎𝜎𝛼𝛼 𝜎𝜎𝛽𝛽 Order 

Sc3N@C80 4.48e+01 1.83e+01 2.19e+01 4.55 𝜎𝜎𝜃𝜃> 𝜎𝜎Φ> 𝜎𝜎𝛼𝛼> 𝜎𝜎𝛽𝛽 
Sc3C2@C80 3.99e+01 2.83e+01 1.89e+01 1.23e+01 𝜎𝜎𝜃𝜃> 𝜎𝜎Φ> 𝜎𝜎𝛼𝛼> 𝜎𝜎𝛽𝛽 

C60 2.77 == 2.77 == 𝜎𝜎𝜃𝜃≈ 𝜎𝜎𝛼𝛼 
 

 

5.17. Conductance 𝑮𝑮 and thermopower 𝑺𝑺 histograms of Sc3N@C80, Sc3C2@C80 EMFs and C60  

In this section, we construct theoretical histograms of conductance G and Seebeck coefficient S by  

sampling the above results for 𝑆𝑆(𝐸𝐸𝐹𝐹) over Fermi energies within a range of 0.18 to -0.6 eV, centred on the 

metallic LUMO resonance DFT-predicted (see the black-dashed rectangle in Figure S24) for Sc3C2@C80. 

Similarly for Sc3N@C80 the Fermi energies within a range of 0.18 to -0.38 eV, centred on the matallic 

LUMO resonance DFT-predicted (see the black-dashed rectangle in Figure S25). For C60 there is no 

metallic LUMO resonance, however, the Fermi energies within a range of 0.0 to -0.5 eV have been 

considered (the black-dashed rectangle in Figure S43). 
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In Figure S45 the theoretical histograms of conductance G against Seebeck coefficient S are shown. These 

calculations were taken in a range of Fermi energies of 0.18 to -0.6, 0.18 to -0.38 and 0.0 to -0.5 eV for 

Sc3C2@C80, Sc3N@C80 and C60, respectively. Figure S45 clearly shows that the Seebeck coefficient of 

Sc3C2@C80  is larger than that of Sc3N@C80. These results are supported by experimental results as shown 

in Figure 2.  

 

 

 

 

 

 

Figure S45. Theoretical histograms of conductance G against Seebeck coefficient S. Three ranges of Fermi 
energies (0.18 to -0.6), (0.18 to -0.38) and (0.0 to -0.5) eV considered for Sc3C2@C80, Sc3N@C80 and C60, 

respectively.   

 

 

5.18 Power Factor  

In this section, the power factor is calculated for Sc3C2@C80, Sc3N@C80 and C60 within the same Fermi 

energy ranges for the four rotation axes and histograms generated. Since the conductance and Seebeck 

coefficient are calculated for a range of rotation angles for both Sc3C2@C80 and Sc3N@C80 , the power 

factor is calculated for the same angles. The black-curves in Figure S46  show distributions obtained from 

a fit uing the Kernel Density Estimation (KDE) in MATLAB. 
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Figure S46. Theoretical power factor histograms for Sc3N@C80 (red histogram), Sc3C2@C80 (green 
histogram), and C60 (grey histogram). The black lines show distributions obtained from a Kernel Density 
Estimation (KDE) in MATLAB.  

 

5.19 Charge inhomogeneity   

To characterize the charge inhomogeneity of each fullerene cage, we now compute the standard deviations 

of their charge distributions. If the charge on atom 𝑖𝑖 is |𝑒𝑒|𝑎𝑎𝑏𝑏, then the standard deviation 𝜎𝜎𝑞𝑞 in the charge is 

defined by 

                               𝜎𝜎𝑞𝑞
2 =< (𝑎𝑎𝑏𝑏−< 𝑎𝑎𝑏𝑏 >)2 >   (S8) 

where angular brackets denote an average over all atoms on the cage. 
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Using DFT SIESTA code, we calculate the number of electrons 𝑎𝑎𝑏𝑏 on each cage atom 𝑖𝑖 in the gas phase for 

Sc3C2@C80, Sc3N@C80, Er3N@C80 and C60 by three methods: Mulliken11, Voronoi12 and Hirshfeld charge13. 

Voronoi and Hirshfeld charges are more reliable than Mulliken charges, especially for large basis sets. 

Table S6 shows the number of electrons on the fullerene cage for Sc3C2@C80, Sc3N@C80, Er3N@C80 and 

C60 in gas phase (as isolated molecule). The number of electrons on the cage atoms vary from one molecule 

to another, depending on the number of atoms in the metallic moiety and the nature of these atoms.   

 

Table S6: Standard deviations of charge, conductance and Seebeck coefficient of Sc3C2@C80, Sc3N@C80, 
Er3N@C80 and C60. Charges are calculated using Mulliken, Hirshfeld and Voronoi methods. The values 
shown for the conductance are geometric standard deviations. 

 Charge homogeneity (no. of electrons) Conductance (G/Go) Seebeck (µV/K) 
Molecule 𝜎𝜎Mulliken  𝜎𝜎Hirshfeld 𝜎𝜎Voronoi  

 
𝜎𝜎𝐺𝐺  Exp. 𝜎𝜎𝐺𝐺  Theo. 𝜎𝜎𝑆𝑆 Exp. 𝜎𝜎𝑆𝑆 Theo. 

Sc3C2@C80 0.0154 0.0113 0.0133  2.00 4.56 19.2 36.0 
Sc3N@C80 0.0163 0.0109 0.0119  2.34 5.58 17.6 29.4 
Er3N@C80    0.00378 0.00259 0.00268  2.00 === 7.7 == 
C60 1.3e-04 5.7e-04 8.5e-04  1.86 2.23 6.8 2.44 
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