Supplementary

Flexible InP-ZnO Nanowire Heterojunction Light Emitting Diodes

Nikita Gagrani^{1*}, Kaushal Vora², Lan Fu^{1, 3}, Chennupati Jagadish^{1, 3}, and Hark Hoe Tan^{1, 3*}

¹Department of Electronic Materials Engineering, ²Australian National Fabrication Facility ACT Node, ³ARC Centre of Excellence for Transformative Meta-Optical Systems,

(b)

Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia

*Nikita.Gagrani@anu.edu.au, Hoe.Tan@anu.edu.au

1. Photo of flexible LED

Fig. S1 (a) SU-8 lifted off film from the substrate with embedded NW array (b) Final device with gold pad on acetate film on two sides that are used to connect the p and n regions of the nanowire array

2. Analysis of I-V characteristics of on-substrate NW LED

To calculate the turn-on voltage and series resistance, I-V curve at higher voltages was extrapolated as a straight line. x-intercept of the line gives turn-on voltage and the slope of line provides series resistance. Extrapolation of the curve is indicated in Fig. S2(a). To calculate ideality factor and reverse saturation current ln(I) vs V was plotted in the forward bias direction and fitted using a straight line as shown in Fig. S2(b). Current in a diode is given by ¹:

$$I = I_s \left(e^{\frac{qV}{nkT}} - 1 \right) \tag{1}$$

where I_s = reverse saturation current

- q = charge on a electron (1.6 x 10 $^{-19}$ C) n = ideality factor k = Boltzmann's constant (1.380649×10⁻²³ J·K⁻¹)
- T = temperature (300 K)

For sufficiently large bias eq. (1) can be written as:

$$I = I_s \left(e^{\frac{qV}{nkT}} \right) \tag{2}$$

Taking natural log on both sides:

$$\ln(I) = \ln(I_{s}) + \frac{q}{nkT}V$$
(3)

By plotting ln(I) vs V, the reverse saturation current and ideality factor can be obtained from the y-intercept and slope, respectively.

g. S2 (a) I-V characteristics of the device at room temperature. (b) Plot of ln (I) vs V.

3. Calculation of depletion region

The depletion region the p-InP nanowire can be calculated by ¹:

$$X_{p} = \sqrt{\frac{2\varepsilon_{n}\varepsilon_{p}N_{D}(V_{bi} - V)}{qN_{A}(\varepsilon_{p}N_{A} + \varepsilon_{n}N_{D})}}$$
(4)

$$X_{n} = \sqrt{\frac{2\varepsilon_{n}\varepsilon_{p}N_{A}(V_{bi} - V)}{qN_{D}(\varepsilon_{p}N_{A} + \varepsilon_{n}N_{D})}}$$
(5)

$$X = X_p + X_n \tag{6}$$

$$V_{bi} = \frac{(\phi_p - \phi_n)}{q} \tag{7}$$

Where, X, X_p , X_n = total depletion width, depletion with in the p and n regions, respectively.

$$N_A = 6.75 \text{ x } 10^{-16} \text{ cm}^{-3}$$

 $N_D = 2 \text{ x } 10^{-19} \text{ cm}^{-3}$

Using above mentioned equations, a depletion width of 138.85 nm is derived, consistent with the value calculated from the EBIC results.

4. Flexible LED

Fig. S3 (a) Surface profile of flexible LED captured from optical profilometer. The region where the NW array is located is indicated by the white circle. (b) Surface profile scan along points x1 to x2. (c) Surface profile scan along points y1 to y2.

Figs. S3 (a) & (b) show that curvature of the flexible NW device varies across the array.

5. I-V comparison of flexible LED and substrate LED

Fig. S4 I-V characteristics of the flexible and with substrate devices at room temperature

Using above-mentioned method (section 2), the turn on voltage is about 3.5 V for both the onsubstrate and flexible device.

References:

- 1. S. M. SZE, in *Semiconductor Devices Physics and Technology*, John Wiley & Son, 2 edn., 2001, ch. 4.
- 2. T. E. Fischer, *Physical Review*, 1966, **142**, 519-523.
- 3. A. Sharma, M. Untch, J. S. Quinton, R. Berger, G. Andersson and D. A. Lewis, *Applied Surface Science*, 2016, **363**, 516-521.
- 4. C. Hilsum, S. Fray and C. Smith, *Solid State Communications*, 1969, 7, 1057-1059.
- 5. N. H. Langton and D. Matthews, *British Journal of Applied Physics*, 1958, **9**, 453-456.