Computational design of double transition metal MXenes with

intrinsic magnetic properties

Yinggan Zhang¹, Zhou Cui², Baisheng Sa^{2,*}, Naihua Miao³, Jian Zhou³ and Zhimei Sun^{3,*}

 ¹College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China
²Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
³School of Materials Science and Engineering, and Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China

Corresponding authors: bssa@fzu.edu.cn (B. Sa), zmsun@buaa.edu.cn (Z. Sun).

Figure S1. Magnetic moment of Cr atoms and magnetic susceptibility as a function of temperature for CrI₃ monolayers.

Figure S2. The spin-revolved density of states (DOS) of $VCr_2C_2T_x$ (T = H, O, F, OH, or bare) MXenes.

Figure S3. The spin-revolved density of states (DOS) of NbCr₂C₂T_x (T = H, O, F, OH, or bare) MXenes.

Figure S4. The spin-revolved density of states (DOS) of $TaCr_2C_2T_x$ (T = H, O, F, OH, or bare) MXenes.

Figure S5. The spin-revolved density of states (DOS) of $MoCr_2C_2T_x$ (T = H, O, F, OH, or bare) MXenes.

Figure S6. The spin-revolved density of states (DOS) of $WCr_2C_2T_x$ (T = H, O, F, OH, or bare) MXenes.

Figure S7. The spin-revolved density of states (DOS) of $ScCr_2C_2T_x$ (T = H, O, F, OH, or bare) MXenes.

Figure S8. The spin-revolved density of states (DOS) of $YCr_2C_2T_x$ (T = H, O, F, OH, or bare) MXenes.

Figure S9. The spin-revolved density of states (DOS) of $TiCr_2C_2T_x$ (T = H, O, F, OH, or bare) MXenes.

Figure S10. The spin-revolved density of states (DOS) of $ZrCr_2C_2T_x$ (T = H, O, F, OH, or bare) MXenes.

Figure S11. The spin-revolved density of states (DOS) of $HfCr_2C_2T_x$ (T = H, O, F, OH, or bare) MXenes.

Figure S12. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $ScCr_2C_2$ obtained by HSE06 approach.

Figure S13. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $ScCr_2C_2H_2$ obtained by HSE06 approach.

Figure S14. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $YCr_2C_2H_2$ obtained by HSE06 approach.

Figure S15. Total energy changes of $ScCr_2C_2F_2$ by AIMD calculations from 0 to 9 ps at 300K, the insets are the structure snapshots of $ScCr_2C_2F_2$ at 9 ps.

Figure S16. The Spin-resolved projected local density of states (PLDOS) of $ScCr_2C_2/2H-MoS_2/ScCr_2C_2$ magnetic tunnel junction (MTJ) along transport direction, (a) and (b) stand for the spin-up and spin-down electrons in parallel configuration (PC), (c) and (d) represent the spin-up and spin-down electrons in antiparallel configuration (APC). The Fermi level is labeled with green dashed line.

Figure S17. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $TiCr_2C_2$ obtained by HSE06 approach.

Figure S18. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $TiCr_2C_2H_2$ obtained by HSE06 approach.

Figure S19. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $TiCr_2C_2F_2$ obtained by HSE06 approach.

Figure S20. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $ZrCr_2C_2$ obtained by HSE06 approach.

Figure S21. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $ZrCr_2C_2F_2$ obtained by HSE06 approach.

Figure S22. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $ZrCr_2C_2(OH)_2$ obtained by HSE06 approach.

Figure S23. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $HfCr_2C_2$ obtained by HSE06 approach.

Figure S24. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $HfCr_2C_2H_2$ obtained by HSE06 approach.

Figure S25. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $HfCr_2C_2F_2$ obtained by HSE06 approach.

Figure S26. (a) Spin-dependent electronic band structure and (b) spin-resolved density of states of $HfCr_2C_2(OH)_2$ obtained by HSE06 approach.

Table S1. The calculated energies (eV) for the most stable model and preferred magnetic orders of $ScCr_2C_2T_x$ (T = H, O, F, OH, or bare). The most stable model is highlighted in bold and the preferred magnetic orders are marked with yellow background.

$ScCr_2C_2$		Model I	Model II	Model III		
	NM	-70.572				
	AFM1	-77.019				
Bare	AFM2	-76.646				
	AFM3		-76.488			
	FM		-77.325			
	NM	-84.758	-86.205	-85.456		
	AFM1	-88.899	-91.370	-90.183		
Н	AFM2	-87.998	-90.918	-89.617		
	AFM3	-87.998	-90.831	-89.496		
	FM	-89.009	-91.481	-90.233		
	NM	-102.193	-101.348	-101.968		
	AFM1	-103.532	-103.822	-104.768		
О	AFM2	-102.905	-105.060	-104.319		
	AFM3	-102.887	-105.531	-104.292		
	FM	-103.522	-103.787	-103.855		
	NM	-92.446	-92.602	-92.142		
	AFM1	-97.181	-99.608	-98.430		
F	AFM2	-96.846	-99.675	-98.134		
	AFM3	-96.538	-99.490	-98.195		
	FM	-96.687	-100.046	-98.460		
	NM	-116.951	-115.113	-115.799		
	AFM1	-121.313	-123.734	-122.223		
ОН	AFM2	-119.817	-123.142	-121.097		
	AFM3	-120.112	-123.360	-118.902		
	FM	-121.304	-123.360	-122.545		

YCr ₂ C ₂		Model I	Model II	Model III		
	NM	-67.726				
Bare	AFM1	-76.424				
	AFM2	-75.981				
	AFM3		-75.885			
	FM		-76.542			
	NM	-82.189	-83.920	-82.991		
	AFM1	-89.548	-89.640	-89.276		
Н	AFM2	-86.200	-89.206	-88.744		
	AFM3	-86.224	-89.201	-88.792		
	FM	-87.256	-89.772	-88.470		
	NM	-99.499	-99.431	-99.135		
	AFM1	-101.959	-103.892	-101.213		
О	AFM2	-104.105	-103.443	-104.098		
	AFM3	-104.419	-103.312	-103.956		
	FM	-102.528	-104.062	-104.210		
	NM	-90.438	-90.753	-90.452		
	AFM1	-98.409	-98.600	-97.079		
F	AFM2	-94.946	-98.268	-96.408		
	AFM3	-95.144	-98.454	-96.804		
	FM	-95.661	-98.538	-97.047		
	NM	-112.797	-115.325	-114.516		
ОН	AFM1	-116.883	-121.816	-120.281		
	AFM2	-118.049	-121.443	-120.126		
	AFM3	-118.402	-121.075	-119.929		
	FM	-117.893	-121.279	-120.414		

Table S2. The calculated energies (eV) for the most stable model and preferred magnetic orders of $YCr_2C_2T_x$ (T = H, O, F, OH, or bare).

TiCr ₂ C ₂		Model I	Model II	Model III		
	NM	-69.002				
	AFM1	-75.070				
Bare	AFM2	-74.535				
	AFM3		-74.644			
	FM		-74.785			
	NM	-83.513	-84.654	-84.053		
	AFM1	-88.451	-90.929	-89.669		
Н	AFM2	-87.674	-90.351	-89.020		
	AFM3	-87.495	-90.308	-88.895		
	FM	-88.225	-90.649	-89.428		
	NM	-101.235	-100.065	-100.737		
	AFM1	-102.246	-105.110	-103.976		
О	AFM2	-103.033	-105.153	-104.117		
	AFM3	-102.670	-105.234	-103.679		
	FM	-102.403	-105.285	-104.269		
	NM	-90.670	-90.112	-90.501		
	AFM1	-96.553	-99.550	-97.949		
F	AFM2	-94.159	-99.063	-97.702		
	AFM3	-94.370	-98.771	-97.427		
	FM	-96.310	-99.326	-97.881		
	NM	-114.966	-113.970	-114.683		
	AFM1	-119.879	-122.642	-120.847		
ОН	AFM2	-119.574	-121.563	-118.133		
	AFM3	-118.822	-122.363	-120.336		
	FM	-117.645	-122.754	-121.512		

Table S3. The calculated energies (eV) for the most stable model and preferred magnetic orders of $TiCr_2C_2T_x$ (T = H, O, F, OH, or bare).

ZrCr ₂ C ₂		Model I	Model II	Model III		
	NM	-75.323				
	AFM1	-82.732				
Bare	AFM2		-82.184			
	AFM3		-81.180			
	FM		-82.416			
	NM	-89.131	-90.775	-89.944		
	AFM1	-95.046	-97.770	-97.794		
Н	AFM2	-94.185	-97.053	-95.377		
	AFM3	-93.936	-96.918	-95.406		
	FM	-94.839	-97.433	-96.171		
	NM	-106.139	-106.755	-106.646		
	AFM1	-109.098	-111.830	-110.507		
0	AFM2	-109.303	-111.508	-108.849		
	AFM3	-109.272	-111.302	-110.307		
	FM	-109.354	-111.947	-110.579		
	NM	-96.960	-97.891	-97.221		
	AFM1	-103.022	-106.888	-105.023		
F	AFM2	-102.842	-105.969	-104.350		
	AFM3	-100.769	-105.953	-104.554		
	FM	-103.133	-106.404	-104.757		
	NM	-121.412	-121.425	-120.248		
	AFM1	-126.985	-130.462	-128.744		
ОН	AFM2	-127.012	-129.251	-127.476		
	AFM3	-126.881	-129.771	-127.883		
	FM	-126.937	-129.927	-128.549		

Table S4. The calculated energies (eV) for the most stable model and preferred magnetic orders of $ZrCr_2C_2T_x$ (T = H, O, F, OH, or bare).

HfCr ₂ C ₂		Model I	Model II	Model III		
	NM	-78.418				
	AFM1	-86.015				
Bare	AFM2	-85.419				
	AFM3		-85.174			
	FM		-85.517			
	NM	-92.614	-94.140	-93.382		
	AFM1	-101.089	-101.216	-99.851		
Н	AFM2	-97.423	-100.324	-98.945		
	AFM3	-97.690	-100.544	-99.111		
	FM	-98.242	-100.873	-99.620		
	NM	-109.822	-109.928	-109.738		
	AFM1	-112.320	-115.381	-114.062		
О	AFM2	-112.321	-113.455	-113.982		
	AFM3	-111.628	-114.960	-113.845		
	FM	-112.427	-115.431	-114.079		
	NM	-100.267	-101.144	-100.571		
	AFM1	-106.875	-110.408	-108.428		
F	AFM2	-106.188	-109.453	-107.833		
	AFM3	-106.557	-109.503	-107.868		
	FM	-106.438	-109.898	-108.333		
	NM	-123.896	-124.303	-124.967		
	AFM1	-130.688	-133.707	-131.823		
ОН	AFM2	-130.568	-132.878	-130.053		
	AFM3	-130.015	-133.049	-129.643		
	FM	-130.563	-133.216	-131.554		

Table S5. The calculated energies (eV) for the most stable model and preferred magnetic orders of $HfCr_2C_2T_x$ (T = H, O, F, OH, or bare).

VCr ₂ C ₂		Model I	Model II	Model III		
	NM		-69.102			
	AFM1	-73.792				
Bare	AFM2	-73.673				
	AFM3		-73.608			
	FM		-74.331			
	NM	-83.558	-84.725	-84.306		
	AFM1	-87.906	-90.232	-89.028		
Н	AFM2	-87.367	-89.677	-88.631		
	AFM3	-87.431	-89.853	-88.731		
	FM	-88.339	-90.531	-89.515		
	NM	-101.027	-100.343	-100.625		
	AFM1	-103.047	-105.743	-104.501		
О	AFM2	-103.670	-105.707	-104.357		
	AFM3	-103.535	-105.725	-104.667		
	FM	-103.528	-105.531	-104.678		
	NM	-91.106	-90.421	-90.784		
	AFM1	-95.511	-98.653	-97.289		
F	AFM2	-98.000	-96.834	-136.355		
	AFM3	-95.330	98.100	-96.759		
	FM	-95.951	-98.847	-96.925		
	NM	-115.539	-114.487	-114.849		
	AFM1	-118.312	-121.297	-119.747		
ОН	AFM2	-118.342	-121.263	-119.592		
	AFM3	-118.194	-120.890	-120.158		
	FM	-118.816	-121.634	-120.594		

Table S6. The calculated energies (eV) for the most stable model and preferred magnetic orders of $VCr_2C_2T_x$ (T = H, O, F, OH, or bare).

NbCr ₂ C ₂		Model I	Model II	Model III		
	NM	-77.758				
Bare	AFM1	-83.387				
	AFM2	-83.170				
	AFM3		-82.957			
	FM		-84.113			
	NM	-91.662	-93.138	-92.348		
	AFM1	-96.544	-99.071	-97.807		
Н	AFM2	-96.302	-98.619	-98.195		
	AFM3	-96.331	-98.674	-97.959		
	FM	-97.143	-99.589	-98.411		
	NM	-108.300	-108.524	-108.208		
	AFM1	-111.025	-114.850	-113.521		
О	AFM2	-111.869	-114.733	-113.440		
	AFM3	-112.277	-114.731	-113.512		
	FM	-112.085	-114.910	-113.592		
	NM	-98.535	-99.914	-99.485		
	AFM1	-104.984	-108.016	-106.395		
F	AFM2	-104.389	-107.244	-106.262		
	AFM3	-104.894	-107.274	-106.267		
	FM	-105.225	-108.136	-106.599		
	NM	-124.083	-123.834	-123.816		
	AFM1	-128.594	-131.808	-130.101		
ОН	AFM2	-128.188	-130.382	-129.947		
	AFM3	-128.145	-131.220	-129.662		
	FM	-128.875	-131.595	-130.615		

Table S7. The calculated energies (eV) for the most stable model and preferred magnetic orders of $NbCr_2C_2T_x$ (T = H, O, F, OH, or bare).

TaCr ₂ C ₂		Model I	Model II	Model III		
	NM	-76.360				
Bare	AFM1	-82.239				
	AFM2	-82.327				
	AFM3		-82.210			
	FM		-83.011			
	NM	-90.543	-91.938	-91.173		
	AFM1	-95.607	-98.088	-96.737		
Н	AFM2	-97.780	-97.844	-97.182		
	AFM3	-95.661	-97.930	-97.056		
	FM	-96.381	-98.755	-97.575		
	NM	-107.075	-107.491	-107.341		
	AFM1	-111.462	-114.559	-112.907		
0	AFM2	-111.497	-114.282	-112.601		
	AFM3	-111.272	-113.608	-112.998		
	FM	-111.408	-114.475	-113.088		
	NM	-98.007	-98.826	-98.250		
	AFM1	-104.600	-107.039	-105.480		
F	AFM2	-103.871	-106.521	-105.801		
	AFM3	-106.183	-106.536	-105.911		
	FM	-106.982	-105.031	-105.814		
	NM	-121.910	-122.771	-122.116		
	AFM1	-127.418	-130.536	-129.418		
ОН	AFM2	-127.606	-130.385	-129.775		
	AFM3	-126.736	-130.113	-129.641		
	FM	-128.492	-130.999	-129.683		

Table S8. The calculated energies (eV) for the most stable model and preferred magnetic orders of $TaCr_2C_2T_x$ (T = H, O, F, OH, or bare).

MoCr ₂ C ₂		Model I	Model II	Model III		
	NM	-77.806				
	AFM1	-82.810				
Bare	AFM2		-82.946			
	AFM3		-82.957			
	FM		-83.619			
	NM	-92.054	-92.927	-92.532		
	AFM1	-96.432	-98.905	-97.659		
Н	AFM2	-96.095	-98.506	-97.329		
	AFM3	-96.094	-98.601	-97.385		
	FM	-96.743	-99.108	-97.906		
	NM	-108.850	-107.795	-108.507		
	AFM1	-111.595	-115.170	-113.386		
О	AFM2	-112.144	-114.015	-113.539		
	AFM3	-112.175	-114.524	-113.463		
	FM	-112.242	-115.121	-113.613		
	NM	-99.059	-97.941	-99.604		
	AFM1	-107.190	-107.478	-105.870		
F	AFM2	-104.140	-106.872	-105.696		
	AFM3	-104.010	-106.833	-105.264		
	FM	-104.685	-107.350	-106.158		
	NM	-123.550	-123.380	-123.104		
	AFM1	-128.142	-130.665	-129.583		
ОН	AFM2	-127.365	-130.030	-128.049		
	AFM3	-127.194	-130.438	-127.960		
	FM	-126.547	-130.050	-129.048		

Table S9. The calculated energies (eV) for the most stable model and preferred magnetic orders of $MoCr_2C_2T_x$ (T = H, O, F, OH, or bare).

WCr ₂ C ₂		Model I	Model II	Model III		
	NM	-81.451				
Bare	AFM1	-86.582				
	AFM2		-86.982			
	AFM3		-87.018			
	FM		-87.563			
	NM	-95.741	-96.683	-96.276		
	AFM1	-100.307	-102.845	-101.562		
Н	AFM2	-100.220	-102.566	-101.384		
	AFM3	-100.211	-102.634	-101.432		
	FM	-100.691	-103.079	-101.893		
	NM	-112.487	-112.418	-111.643		
	AFM1	-115.554	-119.482	-117.817		
0	AFM2	-116.367	-119.193	-117.973		
	AFM3	-116.349	-119.133	-117.493		
	FM	-116.491	-119.541	-117.817		
	NM	-103.079	-103.445	-103.249		
	AFM1	-110.962	-111.555	-109.968		
F	AFM2	-108.250	-110.923	-109.728		
	AFM3	-110.003	-110.861	-109.528		
	FM	-108.696	-111.474	-110.034		
	NM	-127.333	-126.963	-127.407		
ОН	AFM1	-131.214	-134.849	-133.199		
	AFM2	-131.289	-134.180	-133.375		
	AFM3	-131.241	-133.563	-132.721		
	FM	-132.066	-134.375	-133.319		

Table S10. The calculated energies (eV) for the most stable model and preferred magnetic orders of $WCr_2C_2T_x$ (T = H, O, F, OH, or bare).