Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

A New Fluorescent Probe for Ultrasensitive Detection of Phosgene in

Solution and Gas Phase

Fenfen Zeng, Guangbo Bao, Baocheng Zhou, and Yifeng Han*

Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China. E-mail: <u>zstuchem@gmail.com</u> (Yifeng Han); Tel: +86-751-86843550;

Contents

Photophysical properties of APQ	··S3
Additional spectroscopic data	··S4
The characterization data of APQ	S18
References	·S22

Photophysical properties of APQ

 Table S1 Photophysical properties of the probe.

entry	λab (nm)	λem (nm)	Φ^{a}
APQ	361	447	0.009
APQ+phosgene	357	461	0.192 ^b

(a) The quantum yield (Φ) of **APQ** and **APQ**-phosgene system were determined according to the literature.¹ (b) Φ was determined in the present of 1.0 equiv. of triphosgene and 2.0 equiv. of TEA.

$$\Phi_{Sample} = \frac{\Phi_{QS} \cdot A_{QS} \cdot F_{Sample} \cdot \lambda_{exQS} \cdot \eta_{Sample}^2}{A_{Sample} \cdot F_{QS} \cdot \lambda_{exSample} \cdot \eta_{QS}^2}$$

Where Φ is quantum yield; A is absorbance at the excitation wavelength; F is integrated area under the corrected emission spectra; λ_{ex} is the excitation wavelength; η is the refractive index of the solution; the Sample and QS refer to the sample and the standard, respectively. We chose quinine sulfate in 0.1N H₂SO₄ as standard, which has the quantum yield of 0.546.²

Additional spectroscopic data

Fig. S1 a) Fluorescence spectra of **APQ** (10.0 μ M) in the presence of 1.0 equiv. of triphosgene in chloroform, THF, acetonitrile, and dioxane solution, respectively (containing 1% TEA, λ ex = 377 nm). b) Fluorescence intensity of a different solution of **APQ** (10.0 μ M) before and after addition of 1.0 equiv. of triphosgene (containing 1% TEA).

Fig. S2 The UV-vis absorption of **APQ** (20.0 μ M) and **APQ** (20.0 μ M) in the present of 1.0 equiv. of triphosgene in CH₃CN solution (containing 1% TEA).

Fig. S3 The changes of the fluorescent intensity of APQ (10.0 μ M) at at 461 nm (I₄₆₁) as a function of phosgene concentration (0-4.0 μ M) under the same condition as the phosgene titration.

The detection limit (DL) of phosgene using APQ was determined from the following equation: ³

$$DL = 3*\sigma/K$$

Where σ is the standard deviation of the blank solution; K is the slope of the calibration curve.

Fig. S4 The fluorescent spectra of **APQ** (10.0 μ M) in the present of triphosgene (10.0 μ M) in the different reaction time (0-300 s) under the same condition as the phosgene titration.

Fig. S5 Fluorescence spectra of a CH₃CN solution of probe **APQ** (10.0 μ M) before and after addition of various analytes (including SOCl₂, POCl₃, TosCl, DCP, AcCl, SO₂Cl₂, ClCH₂COCl, (COCl)₂, triphosgene, and phosgene (λ ex = 377 nm).

Fig. S6 Fluorescence spectra of a CH₃CN solution of probe **APQ** (10.0 μ M) in the presence of 1.0 equiv. of various analytes (including SOCl₂, POCl₃, TosCl, DCP, AcCl, SO₂Cl₂, ClCH₂COCl, (COCl)₂, triphosgene, and phosgene, followed by 1.0 equiv. of triphosgene (containing 1% TEA, $\lambda ex = 377$ nm).

Fig. S7 Fluorescence intensity in 461 nm (I₄₆₁) of a CH₃CN solution of probe **APQ** (10.0 μ M) before and after addition of various analytes (including SOCl₂, POCl₃, TosCl, DCP, AcCl, SO₂Cl₂, ClCH₂COCl, (COCl)₂, triphosgene, and phosgene, followed by the addition of 1.0 equiv. of triphosgene (containing 1% TEA, λ ex = 377 nm).

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

Fig. S8 ¹HNMR spectra of APQ and APQ in the present of phosgene in d_6 -DMSO.

Fig. S9 HR-MS (ESI) spectra of reaction mixture of APQ and phosgene.

Fig. S10 The ¹³C NMR spectrum of the reaction product of APQ and phosgene.

for 1 min to vapors containing various analytes, (1) **APQ** only; (2) SOCl₂; (3) POCl₃; (4) TosCl; (5) DCP; (6) AcCl; (7) SO₂Cl₂; (8) ClCH₂COCl; (9) (COCl)₂; (10) triphosgene, and (11) phosgene (under a 365 nm hand-held UV lamp).

		Respo	LOD (i	Response time		
Entry	Structures	nse mode	n solution)	In solution	Gaseous	References
1	HO S	off-on	0.48 nM	20 min	20 min	<i>Dyes</i> <i>Pigments</i> , 2019 , 163, 483-488.
2	HO'N	off-on	6.3 nM	15 in	5 min	Dyes Pigments, 2020 , 173, 10784.
3		off-on	124 pM	< 3 S	30 s	Sens. Actuators. B. Chem., 2019 , 283, 458-462.
4		off-on	1.65 nM	3 min	-	Sens. Actuators. B. Chem., 2021 , 326, 128837.
5		ratiom etric	526 nM	2.5 s	10 s	Anal. Chem., 2019 , 91, 5690-5697.
6	OH H N F F	off-on	0.09 ppb	< 10 s	30 s	Anal. Chem., 2017 , 89, 12837-12842.
7	H ₂ N S	ratiom etric	0.14 ppm	4 min	10 min	<i>Anal. Chem.</i> , 2017 , 89, 12596-12601.

 Table S2 Summary of some reported phosgene fluorescent probes.

8	F N HN NH ₂	ratiom etric	0.14 ppm	< 1.5 s	< 1 min	ACS Appl. Mater. Interfaces, 2017 , 9, 13920-13927.
9	H ₂ N _V O N _V Si N _V	off-on	8.9 nM	< 4 min	5 min	<i>J. Mater.</i> <i>Chem. C.</i> , 2018 , 6, 10472-10479.
10	NH OH	off-on	0.4µM	< 1 min	20 s	New J. Chem., 2019 , 43, 11743-11748.
11	S N	off-on	1.54 nM	< 1.3 min	50 s	New J. Chem., 2019 , 43, 14991-14996.
12		off-on	3.3 nM	< 30 s	10 min	<i>Anal.</i> <i>Methods,</i> 2020 , 12, 3123-3129.
13	O N O N O NH ₂ NH ₂	ratiom etric	2.25 μM	10 min	20 min	J. Chin. Chem. Soc., 2020 , 67, 1213-1218.
14	HO N H	ratiom etric	0.14 ppm	< 30 s	< 2 min	<i>Talanta.</i> , 2019 , 200, 78- 83.

15		off-on	50 μΜ	-	-	<i>Chem.</i> <i>Commun.</i> , 2012 , 48, 1895-1897.
16	но он	off-on	1-18 nM	-	-	Anal. Chem., 2012 , 84, 4594-4597.
17	NH H ₂ N	off-on	0.16 ppm	< 20 s	~ 1 min	This work

The characterization data of APQ

¹H NMR of 2-(2-nitrophenyl)quinazolin-4(3H)-one

¹H NMR of 2-(2-aminophenyl)quinazolin-4(3H)-one (APQ)

¹³C NMR of **2-(2-aminophenyl)quinazolin-4(3H)-one (APQ)**

HR-MS of 2-(2-aminophenyl)quinazolin-4(3H)-one (APQ)

11.501 11

¹H NMR of **5H-quinazolino**[**4,3-b**]**quinazoline-6,8-dione** (APQU1)

¹³C NMR of 5H-quinazolino[4,3-b]quinazoline-6,8-dione (APQU1)

HR-MS of 5H-quinazolino[4,3-b]quinazoline-6,8-dione (APQU1)

References

- 1 R. A. Velapoldi, and H. H. Tønnesen, J. Fluoresc., 2004, 14, 465-472.
- 2 (a) D. F. Eaton, Pure Appl. Chem., 1988, 60, 1107-1114; (b) D. Magde, R. Wong, and P. G.
 Seybold, Photochem. Photobiol., 2002, 75, 327-334.
- 3 (a) J. T. Yeh, P. Venkatesan and S. P. Wu, New J. Chem., 2014, 38, 6198-6204. (b) A. Roy, D.
 Kand, T. Saha and P. Talukdar, Chem. Commun., 2014, 50, 5510-5513.