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1. Experimental 

1.1. Reagents and chemicals 

Polyacrylonitrile (PAN, Mw = 150,000) was purchased from Sigma-

Aldrich Co. Ltd. Cobalt (II) chloride hexahydrate (CoCl2∙6H2O) and N, N-

dimethylformamide (DMF) were purchased from Shantou Xilong 

Chemical Industry Incorporated Co., Ltd. The commercial Pt/C catalyst 

(with 20 wt% Pt on carbon black) was purchased from Alfa Aesar. All the 

reagents have reached the degree of analytical reagent. Ultrapure water 

(Millipore Milli-Q grade) with a resistivity of 18.2 MΩ was used in all the 

experiments. 

1.2. Materials characterization 

The morphology and microstructure of the catalysts were characterized by 

scanning electron microscopy (SEM, Hitachi S-4800), transmission 

electron microscopy (TEM, FEI Tecnai G20) and high-resolution 

transmission electron microscopy (HRTEM, FEI Tecnai F20) operated at 

200 kV. Powder X-ray diffraction (XRD) patterns were collected on a 

Rigaku D/max 2500 diffract meter with Cu K radiation (λ=1.54056 Å). The 

Co contents of Co-CN nanofibers were determined by ICP-MS 

(PerkinElmer NexION 300X), and the C and N contents were analyzed by 

CHN elemental analysis (Vario MACRO). The X-ray photoelectron 

spectroscopy (XPS) were performed by an ESCALAB 250 Xi XPS system 

of Thermo Scientific, where the analysis chamber was 1.5 × 10-9 mbar and 

the X-ray spot was 500 nm. 

 

 

 

 

 

 

 

 



 

Fig. S1 SEM images of the (a) Co0-PAN, (b) Co2-PAN, (c) Co5-PAN, (d) 

Co10-PAN and (e) Co20-PAN fibers. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S2 SEM images of the (a) Co0-CN, (b) Co2-CN, (c) Co5-CN, (d) 

Co10-CN and (e) Co20-CN nanofibers. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S3 HRTEM image of Co0-CN nanofiber. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S4 The comparison on HRTEM images of the (a) Co0-CN and (b) 

Co2-CN nanofibers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S5 XRD patterns of the Co0-CN, Co2-CN, Co5-CN, Co10-CN and 

Co20-CN nanofibers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S6 Polarization curves recorded in 0.5 M H2SO4 at 10 mV s-1 for Co10-

CN nanofiber before and after 5000 cycles from 0.5 to -0.5 V vs RHE at 

100 mV s-1 under acid condition. 

 

 

 

 

 

 

 

 

 



 

Fig. S7 XRD patterns of the Co2-CN, Co5-CN, Co10-CN and Co20-CN 

nanofibers after acid etching. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S8 Electrochemical characterizations for HER activity in 0.1 M KOH. 

(a) Polarization curves obtained at 10 mV s-1 for Co0-CN, Co2-CN, Co5-

CN, Co10-CN, Co20-CN nanofibers and Pt/C catalyst; (b) Tafel plots of 

the corresponding samples; (c) Polarization curves recorded at 10 mV s-1 

for Co10-CN nanofiber before and after 5000 cycles from 0.5 to -0.5 V vs 

RHE at 100 mV s-1 under basic condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S9 The structure-activity relationship between ratio of terminal N 

site and potential at current density of 10 mA cm-2 in the Co0-CN, Co2-

CN, Co5-CN, Co20-CN and Co10-CN nanofibers under (a) acidic and (b) 

alkaline conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1. The characteristic data of the Co-CN nanofibers  

Samples 

Element content (%) 

Overpotential to 

deliver 10 mA cm-2 

(mV) 
Impedancec 

(Ω) 

Coa Cb Nb H2SO4 KOH 

Co0-CN fiber 0 40.25 9.52 448 489 21.3 

Co2-CN fiber 1.86 39.51 10.04 355 429 18.9 

Co5-CN fiber 5.02 37.62 9.79 273 359 18.8 

Co10-CN fiber 9.64 35.83 9.84 210 251 18.5 

Co20-CN fiber 18.75 30.39 9.61 236 277 18.4 

a Co loading amount in different samples is determined by the mass of Co 

element with ICP-MS analysis. 

b C and N content were measured by the X-ray photoelectron spectroscopy 

and CHN element analysis. 

c The impedance was obtained via the fitting data using the ZView 

software. 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Results of XPS data of N element in the Co-CN nanofibers 

Samples 

Species peak area 
Ratio of 

terminal N  
terminal N a Co-Nx graphitic N 

Co0-CN fiber 0 0 6352.4 0 

Co2-CN fiber 1459.6 2409.5 922.0 0.3 

Co5-CN fiber 1935.1 1678.8 723.3 0.45 

Co20-CN fiber 3846.9 709.3 2424.3 0.55 

Co10-CN fiber 3242.1 733.4 1452.9 0.6 

a Peak area was calculated under the assumption that three N species 

occupy identical areas and have identical atomic sensitivity factors 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S3. Comparison of HER performance of Co10-CN nanofiber 

with those reported Co-based and N-based electrocatalysts in acid 

electrolytes 

Catalysts η10 (mV) Electrolytes References 

Co10-CN nanofiber 210 0.5 M H2SO4 This work 

Co@NG 147 0.5 M H2SO4 S1 

Co@NCNTs 260 0.5 M H2SO4 S2 

Co-CN-600 181 0.5 M H2SO4 S3 

NCN-1000-5 150 0.5 M H2SO4 S4 

NDC-900 280 1.0 M H2SO4 S5 

NC 140 0.5 M H2SO4 S6 

C3N4-CNT-CF 240 0.5 M H2SO4 S7 

ONPPGC/OCC 380 0.5 M H2SO4 S8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S4. Comparison of HER performance of Co10-CN nanofiber 

with those reported Co-based and N-based electrocatalysts in alkaline 

electrolytes 

Catalysts η10 (mV) Electrolytes References 

Co10-CN nanofiber 251 0.1 M KOH This work 

Co-N/GF-900 165 1.0 M KOH S9 

(Co-NMC)1/NC 220 0.1 M KOH S10 

Co@NG 220 1.0 M KOH S11 

Co-NG 273 1.0 M KOH S1 

Co-NRCNTs 370 1.0 M KOH S2 

CoOx@CN 232 1.0 M KOH S12 

Co@N-C 210 1.0 M KOH S13 
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