Supporting Information

Heterogeneous Co-CN nanofibers with controlled active terminal N sites for hydrogen evolution reaction

Fuying Huang ^{a,b}, Yadan Jian ^a, Fengying Zheng ^{a,b}, Yancai Li ^{a,b}, Shunxing Li ^{a,b,*}, Jie Chen ^{a,b,*}

a College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.

b Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China

E-mail: chenj@mnnu.edu.cn; shunxing_li@aliyun.com; Fax: +86-596-2591395; Tel: +86-596-2591395.

1. Experimental

1.1. Reagents and chemicals

Polyacrylonitrile (PAN, Mw = 150,000) was purchased from Sigma-Aldrich Co. Ltd. Cobalt (II) chloride hexahydrate (CoCl₂·6H₂O) and N, Ndimethylformamide (DMF) were purchased from Shantou Xilong Chemical Industry Incorporated Co., Ltd. The commercial Pt/C catalyst (with 20 wt% Pt on carbon black) was purchased from Alfa Aesar. All the reagents have reached the degree of analytical reagent. Ultrapure water (Millipore Milli-Q grade) with a resistivity of 18.2 M Ω was used in all the experiments.

1.2. Materials characterization

The morphology and microstructure of the catalysts were characterized by scanning electron microscopy (SEM, Hitachi S-4800), transmission electron microscopy (TEM, FEI Tecnai G20) and high-resolution transmission electron microscopy (HRTEM, FEI Tecnai F20) operated at 200 kV. Powder X-ray diffraction (XRD) patterns were collected on a Rigaku D/max 2500 diffract meter with Cu K radiation (λ =1.54056 Å). The Co contents of Co-CN nanofibers were determined by ICP-MS (PerkinElmer NexION 300X), and the C and N contents were analyzed by CHN elemental analysis (Vario MACRO). The X-ray photoelectron spectroscopy (XPS) were performed by an ESCALAB 250 Xi XPS system of Thermo Scientific, where the analysis chamber was 1.5 × 10⁻⁹ mbar and the X-ray spot was 500 nm.

Fig. S1 SEM images of the (a) Co0-PAN, (b) Co2-PAN, (c) Co5-PAN, (d) Co10-PAN and (e) Co20-PAN fibers.

Fig. S2 SEM images of the (a) Co0-CN, (b) Co2-CN, (c) Co5-CN, (d) Co10-CN and (e) Co20-CN nanofibers.

Fig. S3 HRTEM image of Co0-CN nanofiber.

Fig. S4 The comparison on HRTEM images of the (a) Co0-CN and (b) Co2-CN nanofibers.

Fig. S5 XRD patterns of the Co0-CN, Co2-CN, Co5-CN, Co10-CN and Co20-CN nanofibers.

Fig. S6 Polarization curves recorded in $0.5 \text{ M H}_2\text{SO}_4$ at 10 mV s^{-1} for Co10-CN nanofiber before and after 5000 cycles from 0.5 to -0.5 V vs RHE at 100 mV s⁻¹ under acid condition.

Fig. S7 XRD patterns of the Co2-CN, Co5-CN, Co10-CN and Co20-CN nanofibers after acid etching.

Fig. S8 Electrochemical characterizations for HER activity in 0.1 M KOH. (a) Polarization curves obtained at 10 mV s⁻¹ for Co0-CN, Co2-CN, Co5-CN, Co10-CN, Co20-CN nanofibers and Pt/C catalyst; (b) Tafel plots of the corresponding samples; (c) Polarization curves recorded at 10 mV s⁻¹ for Co10-CN nanofiber before and after 5000 cycles from 0.5 to -0.5 V vs RHE at 100 mV s⁻¹ under basic condition.

Fig. S9 The structure-activity relationship between ratio of terminal N site and potential at current density of 10 mA cm⁻² in the Co0-CN, Co2-CN, Co5-CN, Co20-CN and Co10-CN nanofibers under (a) acidic and (b) alkaline conditions.

	Overpotential to					
Samples	Element content (%)			deliver 10 mA cm ⁻² (mV)		Impedance ^c
	Co ^a	C ^b	N ^b	H_2SO_4	КОН	(12)
Co0-CN fiber	0	40.25	9.52	448	489	21.3
Co2-CN fiber	1.86	39.51	10.04	355	429	18.9
Co5-CN fiber	5.02	37.62	9.79	273	359	18.8
Co10-CN fiber	9.64	35.83	9.84	210	251	18.5
Co20-CN fiber	18.75	30.39	9.61	236	277	18.4

Table S1. The characteristic data of the Co-CN nanofibers

a Co loading amount in different samples is determined by the mass of Co element with ICP-MS analysis.

b C and N content were measured by the X-ray photoelectron spectroscopy and CHN element analysis.

c The impedance was obtained via the fitting data using the ZView software.

	Spe	Ratio of		
Samples	terminal N ^a	Co-N _x	graphitic N	terminal N
Co0-CN fiber	0	0	6352.4	0
Co2-CN fiber	1459.6	2409.5	922.0	0.3
Co5-CN fiber	1935.1	1678.8	723.3	0.45
Co20-CN fiber	3846.9	709.3	2424.3	0.55
Co10-CN fiber	3242.1	733.4	1452.9	0.6

Table S2. Results of XPS data of N element in the Co-CN nanofibers

a Peak area was calculated under the assumption that three N species occupy identical areas and have identical atomic sensitivity factors

Table S3. Comparison of HER performance of Co10-CN nanofiber with those reported Co-based and N-based electrocatalysts in acid electrolytes

Catalysts	$\eta_{10}(mV)$	Electrolytes	References
Co10-CN nanofiber	210	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	This work
Co@NG	147	$0.5 \mathrm{~M~H_2SO_4}$	S 1
Co@NCNTs	260	$0.5 \mathrm{~M~H_2SO_4}$	S2
Co-CN-600	181	$0.5 \ M \ H_2 SO_4$	S3
NCN-1000-5	150	$0.5 \ M \ H_2 SO_4$	S4
NDC-900	280	$1.0 \text{ M} \text{H}_2 \text{SO}_4$	S5
NC	140	$0.5 \ M \ H_2 SO_4$	S 6
C ₃ N ₄ -CNT-CF	240	$0.5 \mathrm{~M~H_2SO_4}$	S 7
ONPPGC/OCC	380	$0.5 \ M \ H_2 SO_4$	S 8

Table S4. Comparison of HER performance of Co10-CN nanofiber with those reported Co-based and N-based electrocatalysts in alkaline electrolytes

Catalysts	$\eta_{10}(mV)$	Electrolytes	References
Co10-CN nanofiber	251	0.1 M KOH	This work
Co-N/GF-900	165	1.0 M KOH	S9
(Co-NMC) ₁ /NC	220	0.1 M KOH	S10
Co@NG	220	1.0 M KOH	S11
Co-NG	273	1.0 M KOH	S 1
Co-NRCNTs	370	1.0 M KOH	S2
CoO _x @CN	232	1.0 M KOH	S12
Co@N-C	210	1.0 M KOH	S13

Supplementary References

[1] H. Fei, J. Dong, M.J. Arellano-Jiménez, G. Ye, N.D. Kim, E.L. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, Atomic cobalt on nitrogen-doped graphene for hydrogen generation, *Nat. Commun.*, 2015, 6, 8668.

[2] X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova, T. Asefa, Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values, *Angew. Chem. Int. Ed.*, 2014, 53, 4372-4376.

[3] J. Chen, H. Zhou, Y. Huang, H. Yu, F. Huang, F. Zheng, S. Li, A 3D Co-CN framework as a high performance electrocatalyst for the hydrogen evolution reaction, *RSC Adv.*,2016, 6, 42014-42018.

[4] H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu, L. Wang, W. Li, Z. Chen, X. Ji, J. Li, Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metalfree electrocatalysts for the ORR, OER and HER, *Energy Environ. Sci.*, 2019, 12, 322-333.

[5] D. K. Singh, R. N. Jenjeti, S. Sampath, M. Eswaramoorthy, Two in one: N-doped tubular carbon nanostructure as an efficient metal-free dual electrocatalyst for hydrogen evolution and oxygen reduction reactions, *J. Mater. Chem. A.*, 2017, 5, 6025-6031.

[6] X. Liu, M. Zhang, D. Yu, T. Li, M. Wan, H. Zhu, Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction, *Electrochim. Acta*, 2016, 215, 223-230.

[7] Z. Peng, S. Yang, D. Jia, P. Da, P. He, A. M. Al-Enizi, Homologous metal-free electrocatalysts grown on three-dimensional carbon networks for overall water splitting in acidic and alkaline media, *J. Mater. Chem. A.*, 2016, 4, 12878-12883.

[8] J. Lai, S. Li, F. Wu, M. Saqib, R. Luque, G. Xu. Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting, *Energy Environ. Sci.*, 2016, 9, 1210-1214.

[9] Y. Tong, X. Yu, H. Wang, B. Yao, C. Li, G. Shi, Trace Level Co-N Doped Graphite Foams as High-Performance Self-Standing Electrocatalytic Electrodes for Hydrogen and Oxygen Evolution, *ACS Catal.*, 2018, 8, 4637-4644.

[10] B. Bayatsarmadi, Y. Zheng, Y. Tang, M. Jaroniec, S.-Z. Qiao, Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping, *Small*, 2016, 12, 3703-3711. [11] M. Zeng, Y. Liu, F. Zhao, K. Nie, N. Han, X. Wang, W. Huang, X. Song, J. Zhong,
Y. Li, Metallic Cobalt Nanoparticles Encapsulated in Nitrogen-Enriched Graphene
Shells: Its Bifunctional Electrocatalysis and Application in Zinc-Air Batteries, *Adv. Funct. Mater.*, 2016, 26, 4397-4404.

[12] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, In Situ Cobalt-Cobalt Oxide/N-Doped Carbon Hybrids as Superior Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution, *J. Am. Chem. Soc.*, 2015, 137, 2688-2694.

[13] J. Wang, D. F. Gao, G. X. Wang, S. Miao, H. H. Wu, J. Y. Li, X. H. Bao, Cobalt Nanoparticles Encapsulated in Nitrogen-Doped Carbon as a Bifunctional Catalyst for Water Electrolysis, *J. Mater. Chem. A*, 2014, 2, 20067-20074.