Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Bis(NHC)-Pd catalyzed asymmetric one-pot cross-coupling reactions of C-C*C-C, C-C*C-O, C-C*C-N, and C-O*C-N on an aryl di-halide catalyzed by a homogenous basic ionic liquid (TAIm[OH]) under base-free, ligand-free and solvent-free conditions

Yanfang Zhu,^a Guiyang Xu,^b* Milad Kazemnejadi*^c

^a Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi'an, 710123.

^b Xi'an Modern Chemistry Research Institute, Xi'an 710065, P.R. China.

^c Department of Chemistry, College of Science, Shiraz University, Shiraz 7194684795, Iran.

* Corresponding authors: xuguiyang90@163.com (Guiyang Xu), miladkazemnejad@yahoo.com (Milad Kazemnejadi)

Table of contents

Fig. S1 FTIR spectra of cyanuric iodide, Im[I]TA, and Im[OH]TA	
Fig. S2 ¹ H-NMR and ¹³ C-NMR spectra of Im[I]TA, and Im[OH]TA	
Fig. S3 (a) ¹ H-NMR (400 MHz, CDCl ₃) and ¹³ C-NMR (100 MHz, CDCl ₃) spectra of	
TAIm[OH]-Pd (4)	
Fig. S4 EDX spectra of Im[I]TA, and (c) Im[OH]TA.	
Fig. S5 Kinetics of the Sonogashira, Heck, Suzuki, C-N cross-coupling, and C-O of	
phenyl acetylene, styrene, phenylboronic acid, imidazole and phenol, respectively with	
aryl halides	
Fig. S6 Kinetics of iodobenzene, bromobenzene, and chlorobenzene for the Heck,	
Suzuki, Sonogashira, C-N, and C-C cross-coupling reactions	
Optimization of reaction parameters	
Fig. S7 Effect of temperature and Pd(OAc) ₂ amount over the Heck cross-coupling	
reaction	
Fig. S8 Influence of DPPH in the beginning and after 30 min on the Heck reaction of	
styrene with iodobenzene	
Characterization data for the coupling products	
Copy of ¹ H-NMR and ¹³ C-NMR spectra of the coupling products	

Fig. S1 FTIR spectra of (a) cyanuric iodide 1, (b) Im[I]TA 2, and (c) Im[OH]TA 3

Fig. S2 ¹H-NMR (250 MHz, D₂O) spectra of (a) Im[I]TA **2**, and (c) Im[OH]TA **3**. ¹³C-NMR (62.9 MHz, D₂O) spectra of (b) Im[I]TA **2**, and (d) Im[OH]TA **3**.

Fig. S3 (a) ¹H-NMR (400 MHz, CDCl₃) and ¹³C-NMR (100 MHz, CDCl₃) spectra of TAIm[OH]-Pd (4)

Fig. S4 EDX spectra of (a) TAIm[I] 2, and (b) TAIm[OH] 3, and TAIm[OH]-Pd (4)

Fig. S5 Kinetics of the (a) Sonogashira, (b) Heck, (c) Suzuki, (d) C-N cross-coupling, and (e) C-O of phenyl acetylene, styrene, phenylboronic acid, imidazole and phenol, respectively with aryl halides catalyzed by TAIm[OH]-Pd. *The reactions were performed under optimized conditions according to the described procedure in Experimental section.*

Fig. S6 Kinetics of (a) iodobenzene, (b) bromobenzene, and (c) chlorobenzene for the Heck, Suzuki, Sonogashira, C-N, and C-C cross-coupling reactions catalyzed by TAIm[OH]-Pd. *The reactions were performed under optimized conditions according to the described procedure in Experimental section.*

Optimization of reaction parameters

To find optimum conditions for the C-C cross-coupling reactions catalyzed by TAIm[OH]-Pd, the reaction parameters of temperature and catalyst amount was studied. For this goal, the Heck coupling reaction of iodobenzene with styrene was chosen as a model reaction for study of the reaction parameters. It worth noted that didn't use any external base in all experiments and the reactions were performed with the intrinsic high basicity of TAIm[OH]-Pd.

Effect of temperature was evaluated in the first step (Fig. S6-a). As shown in Fig. S6 there is not any product at temperatures below 40 °C; and 120 °C was the premium temperature providing 90% isolated yield (Fig. S6-a). Raising temperature didn't effect on reaction efficiency. Next, the Pd(OAc)₂ amount was studied over the model reaction (Fig. S6-b). The results demonstrated that 1.0 mol% was the premium amount of Pd(OAc)₂. The relationship between catalyst amount mol% and reaction isolated yield was shown in Fig. S6-b.

Fig. S7 Effect of (a) temperature (1.0 mol% Pd(OAc)₂) and (b) Pd(OAc)₂ amount (at 120 °C) over the Heck cross-coupling reaction of iodobenzene (1.0 mmol) with styrene (1.3 mmol) catalyzed by TAIm[OH]-Pd for 60 min.

Fig. S8 Influence of DPPH in the beginning and after 30 min on the Heck reaction of styrene with iodobenzene

Characterization data for the coupling products:

1,2-Diphenylethyne (Table 2, product 6)

White solid. M.P. 63 °C (Lit. [1], 65 °C). ¹H NMR (250 MHz, CDCl₃); δ (ppm)= 6.93-7.29 (m, 5H), 7.44-7.98 (m, 5H), ¹³C NMR (62.5 MHz, CDCl₃): δ (ppm)= 89.5, 127.2, 128.6, 128.8, 132.4. Elemental Analysis: Anal. Calcd. (%) for C₁₄H₁₀: C, 94.34; H, 5.66. Found (%): C, 94.44; H, 5.56. EI-MS (*m*/*z*): 178 (M⁺).

1,2-Diphenylethene (Table 2, product 7)

White solid. M.P. 122-125 °C (Lit. [1], 124-125 °C). ¹H-NMR (250 MHz, CDCl₃): δ (ppm)= 7.13 (d, 2H), 7.31 (m, 6H), 7.52 (m, 4H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ (ppm)= 127.0, 128.1, 128.5, 137.4. Elemental Analysis: Anal. Calcd. (%) for C₁₄H₁₂: C, 93.29; H, 6.71. Found (%): C, 93.44; H, 6.83. EI-MS (*m*/*z*): 180 (M⁺).

1,1'-Biphenyl (Table 2, product 8)

White solid. M.P. 68-70 °C (Lit. [1], 66-68 °C). ¹H NMR (250MHz, CDCl₃): δ (ppm)= 7.34 (m, 2H), 7.44 (m, 4H), 7.58-7.60 (m, 4H); ¹³C NMR (62.5 MHz, CDCl₃): δ (ppm)= 126.3, 127.4, 129.3, 142.5. Elemental Analysis: Anal. Calcd. (%) for C₁₂H₁₀: C, 93.46; H, 6.54. Found (%): C, 93.44; H, 6.56. EI-MS (*m*/*z*): 154 (M⁺).

1-Phenyl-1*H*-imidazole (Table 2, product 9)

Pale yellow oil. ¹H NMR (250 MHz, CDCl₃): δ (ppm)= 7.15-7.45 (m, 6H), 7.80 (s, 1H); ¹³C NMR (62.5 MHz, CDCl₃): δ (ppm)= 118.2, 121.5, 127.5, 130.0, 130.3, 135.5, 137.4. EI-MS (*m*/*z*): 144 (M⁺).

Oxydibenzene (Table 2, product 10)

Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ (ppm)= 7.33-7.37 (m, 4H), 7.09-7.14 (t, *J* = 7.2 Hz, 2H), 7.01-7.04 (t, *J* = 7.6 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm)= 118.9, 1210.9, 128.9, 157.2. EI-MS (*m*/*z*): 170 (M⁺).

1-(Phenylethynyl)-4-styrylbenzene (Table 3, product 11)

White solid. M.P. 222-226 °C. ¹H NMR (250 MHz, CDCl₃): δ (ppm)= 7.04 (s, 2H), 7.39-7.56 (m, 10H), 7.70 (d, *J*=7.5 Hz, 2H). ¹³C NMR (62.9 MHz, CDCl₃): δ (ppm)= 89.1, 121.8, 127.1, 127.6, 128.0, 128.1, 128.6, 128.7, 131.9, 132.4. Elemental Analysis: Anal. Calcd. (%) for C₂₂H₁₆: C, 94.25; H, 5.75. Found (%): C, 94.28; H, 6.72. EI-MS (*m*/*z*): 280 (M⁺).

4-Styryl-1,1'-biphenyl (Table 4, product 12)

White solid. M.P. 240 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm)= 7.19 (s, 2H), 7.23-7.38 (m, 2H), 7.43-7.60 (m, 8H), 7.70-7.72 (dd, *J*=8.2, 1.5 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)= 127.0, 127.3, 127.5, 128.0, 128.5, 128.8, 129.5, 136.3, 136.8, 140.0, 140.5. Elemental Analysis: Anal. Calcd. (%) for C₂₀H₁₆: C, 93.71; H, 6.29. Found (%): C, 93.66; H, 6.34. EI-MS (*m/z*): 256 (M⁺).

4-(Phenylethynyl)-1,1'-biphenyl (Table 5, product 13)

Pale yellow solid. M.P. 95 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm)= 7.31-7.49 (m, 6H), 7.57-7.62 (m, 4H), 7.66-7.74 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)=90.2, 121.3, 127.3, 127.6, 128.0, 128.2, 128.7, 129.1, 132.3, 132.8, 140.4, 140.9. Elemental Analysis: Anal. Calcd. (%) for C₂₀H₁₄: C, 94.45; H, 5.55. Found (%): C, 94.55; H, 5.45. EI-MS (*m/z*): 254 (M⁺).

1-(4-Styrylphenyl)-1*H*-imidazole (Table 6, product 14)

Pale yellow solid. M.P. 146-148 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm)= 7.08 (s, 1H), 7.11 (s, 1H), 7.21-7.29 (m, 3H), 7.34-7.38 (m, 6H), 7.67 (dd, *J*=7.9, 1.9 Hz, 1H), 7.78 (t, *J*=8.6 Hz, 1H), 7.79 (t, *J*=8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)= 118.2, 127.1, 127.3, 127.9, 128.3, 127.9, 128.3, 128.5, 129.0, 15.3, 136.0, 136.9, 137.7. Elemental Analysis: Anal. Calcd. (%) for C₁₇H₁₄N₂: C, 82.90; H, 5.55, N, 11.37. Found (%): C, 82.80; H, 5.63, N, 11.39. EI-MS (*m/z*): 246 (M⁺).

1-([1,1'-Biphenyl]-4-yl)-1*H*-imidazole (Table 6, product 15)

White solid. M.P. 88-92 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm)= 7.27-7.33 (m, 2H), 7.48-7.52 (m, 2H), 7.57-7.69 (m, 6H), 7.81 (d, *J*=8.5 Hz, 1H), 7.82 (d, *J*=8.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)= 114.9, 118.3, 127.5, 128.0, 128.7, 129.3, 130.0, 135.1, 135.9, 140.4, 140.9. Elemental Analysis: Anal. Calcd. (%) for C₁₅H₁₂N₂: C, 81.79; H, 5.49, N, 12.72. Found (%): C, 81.77; H, 5.46, N, 12.67. EI-MS (*m*/*z*): 220 (M⁺).

1-(4-(Phenylethynyl)phenyl)-1*H*-imidazole (Table 6, product 16)

White solid. M.P. 82-85 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm)= 7.27-7.39 (m, 4H), 7.46-7.50 (m, 2H), 7.36-7.65 (m, 2H), 7.68-7.73 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)= 89.2, 118.2, 121.3, 122.3, 127.2, 128.2, 128.5, 129.7, 132.4, 135.6, 136.5. Elemental Analysis: Anal. Calcd. (%) for C₁₇H₁₂N₂: C, 83.58; H, 4.95, N, 11.47. Found (%): C, 82.64; H, 5.42, N, 11.94. EI-MS (*m*/*z*): 244 (M⁺).

1-Phenoxy-4-styrylbenzene (Table 7, product 17)

Pale yellow solid. M.P. 212-214 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm)= 6.98-7.01 (m, 6H), 7.12-7.23 (m, 4H), 7.36-7.40 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)= 118.7, 121.7, 124.5, 127.3, 127.9, 128.4, 128.7, 130.0, 136.8, 155.9, 156.9. Elemental Analysis: Anal. Calcd. (%) for C₂₀H₁₆O: C, 88.20; H, 5.92. Found (%): C, 88.28; H, 5.84. EI-MS (*m/z*): 272 (M⁺).

4-Phenoxy-1,1'-biphenyl (Table 7, product 18)

White solid, M.P. 164 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm)= 6.97 (d, *J*=8.0 Hz, 1H), 7.00 (d, *J*=8.0 Hz, 1H), 7.13-7.22 (m, 3H), 7.36-7.49 (m, 5H), 7.58-7.63 (m, 4H); ¹³C NMR (400 MHz, CDCl₃): δ (ppm)= 118.1, 119.7, 121.6, 127.4, 127.8, 128.4, 128.7, 129.3, 134.4, 141.0, 155.7, 157.5. EI-MS (*m*/*z*): 246 (M⁺). Elemental Analysis: Anal. Calcd. (%) for C₁₈H₁₄O: C, 87.70; H, 5.93. Found (%): C, 87.44; H, 6.07. EI-MS (*m*/*z*): 272 (M⁺).

1-Phenoxy-4-(phenylethynyl)benzene (Table 7, product 19)

White solid, M.P. 186-189 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm)= 6.97-7.00 (m, 4H), 7.13-7.20 (m, 2H), 7.26 (d, *J*=8.8 Hz, 1H), 7.27 (d, *J*=8.8 Hz, 1H), 7.60-7.62 (m, 2H). ¹³C NMR (62.5 MHz, CDCl₃): δ (ppm)= 89.4, 115.2, 117.7, 119.4, 121.8, 127.5, 128.3, 128.8, 131.7, 132.2, 156.7, 157.3. Elemental Analysis: Anal. Calcd. (%) for C₂₀H₁₄O: C, 88.86; H, 5.22. Found (%): C, 88.94; H, 6.08. EI-MS (*m*/*z*): 270 (M⁺).

1-(4-Phenoxyphenyl)-1*H*-imidazole (Table 7, product 20)

Yellow solid, M.P. 94-98 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm)= 6.92 (d, *J*=8.1 Hz, 2H), 6.94 (d, *J*=8.1 Hz, 2H), 7.05-7.13 (m, 4H), 7.17-7.19 (m, 4H), 7.36-7.40 (m, 4H), 7.62-7.67 (m, 4H). ¹³C NMR (62.5 MHz, CDCl₃): δ (ppm)= 118.1, 118.6, 119.0, 121.5, 126.4, 128.1, 130.0, 130.4, 135.4, 156.5, 157.9. Elemental Analysis: Anal. Calcd. (%) for C₁₅H₁₂N₂O: C, 76.25; H, 5.12; N, 11.86; O, 6.77. Found (%): C, 76.29; H, 5.10, N, 11.84, O, 6.77. EI-MS (*m/z*): 236 (M⁺).

1-Chloro-4-styrylbenzene (Scheme 4, product 21)

White solid. mp: 127-129 °C [2]; ¹H NMR (250 MHz, CDCl₃): δ (ppm)= 7.11-7.01 (m, 2H), 7.28 (dd, J = 15.3, 8.0 Hz, 2H), 7.38-7.32 (m, 3H), 7.44 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H). 13C NMR (62.5 MHz, CDCl₃): δ (ppm)= 127.6, 128.5, 128.6, 128.8, 129.3, 133.1, 135.1, 137.0. Elemental Analysis: Anal. Calcd. (%) for C₁₄H₁₁Cl: C, 78.32; H, 5.16; Cl, 16.51. Found (%): C, 78.28; H, 5.18, Cl, 16.53. EI-MS (*m*/*z*): 154 (M⁺). EI-MS (*m*/*z*): 214 (M⁺).

References

- [1] Cheng, S., Wei, W., Zhang, X., Yu, H., Huang, M., & Kazemnejadi, M. (2020). Green Chem., 2020, 22, 2069-2076.
- [2] J.Q. Zhang, J. Cao, W. Li, S.M. Li, Y.K. Li, J.T. Wang and L. Tang, *New J. Chem.*, 2017, *41*, 437-441.

Copy of ¹H-NMR and ¹³C-NMR spectra of the coupling products

Fig. S10 ¹³C-NMR (62.9 MHz) spectrum of 6

Fig. S12 ¹³C-NMR (62.9 MHz) spectrum of 7

Fig. S13 ¹H-NMR (250 MHz) spectrum of 8

Fig. S14 13 C-NMR (62.9 MHz) spectrum of 8

Fig. S15 ¹H-NMR (250 MHz) spectrum of 9

Fig. S17 ¹H-NMR (250 MHz) spectrum of 10

Fig. S18 ¹³C-NMR (62.9 MHz) spectrum of 10

Fig. S19 ¹H-NMR (250 MHz) spectrum of 11

Fig. S20 ¹³C-NMR (62.9 MHz) spectrum of 11

Fig. S21 ¹H-NMR (250 MHz) spectrum of 12

Fig. S22 ¹³C-NMR (62.9 MHz) spectrum of 12

Fig. S23 ¹H-NMR (250 MHz) spectrum of 13

Fig. S24 13 C-NMR (62.9 MHz) spectrum of 13

Fig. S25 ¹H-NMR (250 MHz) spectrum of 14

Fig. S26 ¹³C-NMR (62.9 MHz) spectrum of 14

Fig. S27 ¹H-NMR (250 MHz) spectrum of 15

Chemical shift (ppm)

Fig. S28 ¹³C-NMR (62.9 MHz) spectrum of 15

Fig. S29 ¹H-NMR (250 MHz) spectrum of 16

Fig. S30 ¹³C-NMR (62.9 MHz) spectrum of 16

Fig. S31 ¹H-NMR (250 MHz) spectrum of 17

Fig. S32 ¹³C-NMR (62.9 MHz) spectrum of 17

Fig. S33 ¹H-NMR (250 MHz) spectrum of 18

Fig. S34 ¹³C-NMR (62.9 MHz) spectrum of 18

Fig. S35 ¹H-NMR (250 MHz) spectrum of 19

Fig. S36 13 C-NMR (62.9 MHz) spectrum of 19

Fig. S37 ¹H-NMR (250 MHz) spectrum of 20

157.949 156.529	135.443 130.420 130.044 128.167 126.420 121.504 119.033 118.615 118.151

Fig. S38 ¹³C-NMR (62.9 MHz) spectrum of 20

Fig. S40 ¹³C-NMR (62.9 MHz) spectrum of 21