Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Supporting Information (SI)

Tricyclic nitrogen-rich explosives with planar backbone: bis(1,2,4-triazolyl)-

1,2,3-triazoles as potential stable green gas generant

Hao Gu, Guangbin Cheng, Hongwei Yang* School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094, P. R. China E-mail: <u>hyang@mail.njust.edu.cn (H. Yang)</u>

CONTENT

1. Experimental section	S1
2. Crystallographic data for crystal 4 3H ₂ O	S2
3. X-ray structural analysis data of crystal 4 3H ₂ O	S3
4. Computational details	S5
5. ¹ H and ¹³ C NMR spectra of the compounds:	S8
6. Differential scanning calorimetry (DSC) scans of compounds 4-16	S23
7. P-t curves of compounds 9, 16 and GN	S30
8. Specific impulse comparison	S31
9. References	S32

1. Experimental section

General methods

All commercially available reagents and solvents were used as supplied without further purification. All these compounds were dried in vacuum drying oven at 40 °C for 4 h to remove the moisture before the characterization. ¹H and ¹³C NMR spectra were recorded on 300MHz (Bruker AVANCE III300) and 500 MHz (Bruker Avace III 500) instruments at 25°C. Chemical shifts in the ¹H and ¹³C spectra are reported relative to Me₄Si as the external standard. The decomposition temperatures were obtained on a differential scanning calorimeter (Mettler Toledo DSC823e) at a scan rate of 5°C min⁻¹ in the Al standard container with a nitrogen flow of 50 mL min⁻¹ (DSC was calibrated using the indium-check method). Infrared (IR) spectra were obtained on a Thermo Nicolet iS10 spectrometer. Elemental analyses (C, H, N) were performed on a Vario EL III Analyzer. The impact sensitivity (IS) and friction sensitivity (FS) were determined based on BAM standard (UN Test 3 (a)(ii)) with 2 or 5kg hammers and UN Test 3 (b) (i). The densities of the compounds were determined at room temperature by employing a gas pycnometer (Quantachrome Upyc 1200e) under helium atmosphere with a standard deviation (0.01). Before the characterization, all these compounds were dried in vacuum drying oven to remove the moisture. The electrostatic sensitivity tests were carried out with an Electric Spark Tester ESD JGY-50 III.

X-ray crystallography

The data were collected with a Bruker three-circle platform diffractometer equipped with a SMART APEX II CCD detector. A Kryo-Flex low-temperature device was used to keep the crystals at a constant 100 K during the data collection. The data collection and the initial unit cell refinement were performed by using APEX2 (v2010.3-0). Data reduction was performed by using SAINT (v7.68A) and XPREP (v2008/2). Corrections were applied for Lorentz, polarization, and absorption effects by using SADABS (v2008/1). The structure was solved and refined with the aid of the programs in the SHELXTL-plus (v2008/4) system of programs. The full-matrix least-

squares refinement on F2 included atomic coordinates and anisotropic thermal parameters for all non-H atoms. The H atoms were included in a riding model. The structure was solved by direct methods with SHELXS-97 and expanded by using the Fourier technique. The nonhydrogen atoms were refined anisotropically. The hydrogen atoms were located and refined.

2. Crystallographic data for crystal 4·3H₂O

Figure S1. The asymmetric unit of crystal **4**·3H₂O with the thermal ellipsoids of nonhydrogen atoms.

crystal	4 ·3H ₂ O
CCDC number	2032203
Empirical formula	$C_{6}H_{3}N_{11}O_{4}GH_{2}O$
Formula weight	347.24
Temperature/K	100
Crystal system	monoclinic
Space group	C2/c
a/Å	28.555(5)
b/Å	4.9529(8)
c/Å	21.680(4)
α/°	90
β/°	118.805(5)
γ/°	90

Table S1 Crystal data and structure refinement details for 4·3H₂O

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Volume/Å ³	2686.8(8)
Ζ	8
ρ (calc) mg/mm ³	1.717
Absorptioncoefficient m/mm ⁻¹	0.154
F(000)	1424
Crystal size/mm ³	0.01 x 0.04 x 0.06
2Θ range for data collection	5.822 to 51.118
Index ranges	$-34 \leqslant h \leqslant 33, -6 \leqslant k \leqslant 5, -23 \leqslant l \leqslant 26$
Reflections collected	12282
Independent reflections	2483 [$R_{int} = 0.0965$, $R_{sigma} = 0.0818$]
Data/restraints/parameters	2483/0/238
Goodness-of-fit on F2	1.053
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0662, wR_2 = 0.1464$
Final R indexes [all data]	$R_1 = 0.1151, wR_2 = 0.1680$

3. X-ray structural analysis data of crystal 4·3H₂O

Table S2 Bond lengths for $4.3H_2O$				
Bond	Length/ Å	Bond	Length/ Å	
01-N1	1.212(4)	N5-N6	1.327(4)	
O2-N1	1.216(4)	N5-C3	1.325(5)	
O6-N11	1.224(4)	N6-N7	1.314(4)	
O7-N11	1.227(4)	N7-C4	1.339(5)	
O3-H3A	0.8700	N8-C5	1.341(4)	
O3-H3B	0.8704	N8-N9	1.336(5)	
O4-H4A	0.8701	N9-C6	1.326(5)	
O4-H4B	0.8704	N10-C6	1.334(5)	
O5-H5A	0.8691	N10-C5	1.331(5)	
O5-H5B	0.8704	N11-C6	1.432(5)	
N1-C1	1.459(5)	N3-H3	0.8800	
N2-C1	1.299(5)	N6-H6	0.8800	
N2-N3	1.348(4)	N8-H8	0.8800	
N3-C2	1.336(5)	C2-C3	1.454(5)	
N4-C2	1.328(5)	C3-C4	1.410(5)	

Electronic	Supplementary	Material	(ESI)	for New	Journal of	f Chemistry.
	11 2		< /			

N4-C1	1.338(5)	C4-C5	1.435(5)	
Table S3 Bong angles for 4·3H ₂ O				
Bond	Angle/o	Bond	Angle/º	
НЗА-ОЗ-НЗВ	104.5	N5-N6-H6	122.1	
H4A-O4-H4B	109.4	N9-N8-H8	124.6	
H5A-O5-H5B	109.5	C5-N8-H8	124.6	
O1-N1-O2	126.0(3)	N2-C1-N4	118.3(3)	
O1-N1-C1	117.1(3)	N1-C1-N2	120.4(3)	
O2-N1-C1	116.9(3)	N1-C1-N4	121.4(3)	
N3-N2-C1	100.5(3)	N3-C2-C3	125.2(3)	
N2-N3-C2	110.5(3)	N4-C2-C3	124.7(3)	
C1-N4-C2	100.7(3)	N3-C2-N4	110.0(3)	
N6-N5-C3	103.9(3)	N5-C3-C2	120.5(3)	
N5-N6-N7	115.8(3)	C2-C3-C4	131.0(3)	
N6-N7-C4	104.1(3)	N5-C3-C4	108.5(3)	
N9-N8-C5	110.8(3)	N7-C4-C3	107.7(3)	
N8-N9-C6	101.5(3)	C3-C4-C5	132.5(3)	
C5-N10-C6	102.4(3)	N7-C4-C5	119.8(3)	
O6-N11-C6	117.7(3)	N8-C5-C4	123.5(3)	
O6-N11-O7	125.2(4)	N10-C5-C4	127.1(3)	
O7-N11-C6	117.1(3)	N8-C5-N10	109.3(3)	
N2-N3-H3	124.7	N10-C6-N11	122.7(3)	
C2-N3-H3	124.7	N9-C6-N10	116.0(4)	
N7-N6-H6	122.1	N9-C6-N11	121.2(3)	

Table S4 Torsion angles for 4.3H₂O

		<u> </u>	
Torsion bonds	Angles/o	Torsion bonds	Angles/o
01-N1-C1-N2	-3.4(5)	N6-N5-C3-C2	-178.9(4)
O1-N1-C1-N4	176.0(3)	N6-N5-C3-C4	0.7(4)
O2-N1-C1-N2	176.2(4)	N5-N6-N7-C4	0.9(4)
O2-N1-C1-N4	-4.5(5)	N6-N7-C4-C3	-0.4(4)
C1-N2-N3-C2	-0.4(4)	N6-N7-C4-C5	-179.7(3)
N3-N2-C1-N1	179.3(3)	C5-N8-N9-C6	-0.3(4)
N3-N2-C1-N4	-0.1(4)	N9-N8-C5-N10	0.3(4)
N2-N3-C2 -N4	0.8(5)	N9-N8-C5-C4	179.0(4)
N2 -N3-C2-C3	-178.7(4)	N8-N9-C6-N10	0.3(5)
C2-N4-C1-N1	-178.8(4)	N8-N9-C6-N11	177.9(4)
C2-N4-C1-N2	0.5(5)	C6-N10-C5-N8	-0.1(4)
C1-N4-C2-N3	-0.7(4)	C6-N10-C5-C4	-178.8(4)
C1-N4-C2-C3	178.7(4)	C5-N10-C6-N9	-0.1(5)
C3-N5-N6-N7	-1.0(4)	C5-N10-C6-N11	-177.7(4)
O6-N11-C6-N9	2.9(6)	N5-C3-C4-N7	-0.2(4)
O6-N11-C6-N10	-179.7(4)	N5-C3-C4-C5	178.9(4)
O7-N11-C6-N9	-176.0(4)	C2-C3-C4-N7	179.3(4)

Electronic Supplement	ntary Material	(ESI) for 1	New Journal	of Chemistry.
The second se				

O7-N11-C6-N10	1.5(6)	C	C2-C3-C4-C5	-1.5(8)
N3-C2-C3-N5	-178.8(4)	Ν	17-C4-C5-N8	1.7(6)
N3-C2-C3-C4	1.8(7)	Ν	J7-C4-C5-N10	-179.8(4)
N4-C2-C3-N5	1.8(6)	C	C3-C4-C5-N8	-177.4(4)
N4-C2-C3-C4	-177.6(4)	C	C3-C4-C5-N10	1.1(7)
	Table S5	Hydrogen b	bonds for $4.3H_2O$	
D-H···A	d(D-H)/ Å	d(HA)/ Å	d(DA)/ Å	<(DHA)/ °
O4-H4B…O3	0.87	1.95	2.786(4)	161.1
O4-H4A…N4	0.87	1.94	2.809(4)	173.1
O4-H4B…O3	0.88	1.98	2.775(4)	148.9
O4-H4B…O3	0.88	1.75	2.577(4)	154.8
O4-H4B…O3	0.88	1.84	2.712(4)	169.6

Symmetry Code: i: x,-1+y,z ii: 1/2-x,3/2-y,1-z

4. Computational details

Calculations were performed by using the Gaussian 09 suite of programs. The geometric optimization of all the structures and frequency analyses for calculation of heats of formation was carried out by using B3-LYP functional^[1] with 6-311G** basis set,^[2] All of the optimized structures were characterized to be local energy minima on the potential surface without any imaginary frequencies. The heats of formation (HOF) of the title compounds were computed through appropriate isodesmic reactions (Scheme S1 and S2). The isodesmic reaction processes, i.e., the number of each kind of formal bond is conserved, are used with application of the bond separation reaction (BSR) rules. The molecule is broken down into a set of two heavy-atom molecules containing the same component bonds. The isodesmic reactions used to derive the HOF of the title compounds are in Scheme S1. The change of enthalpy for the reactions at 298 K can be expressed as

$$\Delta H_{298} = \Sigma \Delta_f H_p - \Sigma \Delta_f H_R \tag{1}$$

where $\Delta_f H_R$ and $\Delta_f H_P$ are the HOF of reactants and products at 298 K, respectively, and ΔH_{298} can

be calculated using the following expression:

$$\Delta H_{298} = \Delta E_{298} + \Delta (PV) = \Delta E_0 + \Delta ZPE + \Delta H_T + \Delta nRT \tag{2}$$

where E_0 is the change in total energy between the products and the reactants at 0 K; ΔZPE is the difference between the zero-point energies (*ZPE*) of the products and the reactants at 0 K; ΔH_T is thermal correction from 0 to 298 K. The $\Delta(PV)$ value in Eq. (2) is the *PV* work term. It equals ΔnRT for the reactions of ideal gas. For the isodesmic reactions, $\Box n = 0$, so $\Delta(PV) = 0$. On the left

side of Eq. (1), apart from target compound, all the others are called reference compounds.

The HOF of reference compounds are available either from the experiments ^[3-5] or from the high level computing like CBS-4M.

For energetic salts, the solid-phase heat of formation is calculated on the basis of a Born-Haber energy cycle (Scheme S2).^[6] The number is simplified by equation 3:

Scheme S2. Born–Haber Cycle for the Formation of energetic salts.

 $\Delta H_f^{o} \text{ (salt, 298 K)} = \Delta H_f^{o} \text{ (cation, 298 K)} + \Delta H_f^{o} \text{ (anion, 298 K)} - \Delta H_L$ (3) in which ΔH_L can be predicted by using the formula suggested by Jenkins, et al.^[7](equation 4):

$$\Delta H_L = U_{pot} + [p(n_M/2 - 2) + q(n_X/2 - 2)]RT$$
(4)

In this equation, n_M and n_X depend on the nature of the ions Mp^+ and Xq^- , respectively.

The equation for lattice potential energy U_{pot} (equation 5) has the form:^[6]

 $U_{POT} \left[\text{kJ mol}^{-1} \right] = \gamma(\rho_m / M_m) 1/3 + \delta (5)$

where ρ_m [g cm⁻³] is the density of the salt, M_m is the chemical formula mass of the ionic material,

and values for g and the coefficients γ (kJ mol⁻¹ cm) and δ (kJ mol⁻¹) are assigned literature values.^[6]

compound	$oldsymbol{E}_0{}^{\mathrm{a}}$	ZPE ^b	H_T °	HOF ^d
CH ₄	-40.5339263	112.26	10.04	-74.6
NH ₃	-56.5826356	86.27	10.05	-45.9
CH ₃ NH ₂	-95.8718463	160.78	11.64	-22.5
NH_2NH_2	-111.91	134.28	11.16	95.4
CH ₃ CH ₃	-79.8565413	187.31	11.79	-84
1,2,3-triazole	-242.3001706	150.23	12.05	233.71
1,2,4-triazole	-242.2683231	150.39	12.06	192.7
1,2,3-triazolide	-241.7160066	113.4	11.75	146.54
1,2,4-triazolium	-242.6693315	184.02	12.27	823.2

Table S6 Abinitio computational values of small molecules used in isodesmic and tautomeric reactions.

^a Total energy calculated by B3LYP/6-31G** method (*a.u.*); ^b zero-point correction (kJ mol⁻¹); ^c thermal correction to enthalpy (kJ mol⁻¹); ^d heat of formation (kJ mol⁻¹).

5. ¹H and ¹³C NMR spectra of the compounds:

Figure S2 ¹H NMR spectra (500 MHz) of 2 in DMSO-d₆ at 25 °C

Figure S4 ¹H NMR spectra (500 MHz) of 3 in DMSO-*d*₆ at 25 °C

Figure S14 ¹³C NMR spectra (125 MHz) of **8** in DMSO- d_6 at 25 °C

Figure S16 ¹³C NMR spectra (125 MHz) of 9 in DMSO- d_6 at 25 °C

Figure S20 ¹³C NMR spectra (125 MHz) of 11 in DMSO-*d*₆ at 25 °C

Figure S22 ¹³C NMR spectra (125 MHz) of 12 in DMSO-d₆ at 25 °C

Figure S24 ¹³C NMR spectra (125 MHz) of 13 in DMSO- d_6 at 25 °C

Figure S26 ¹³C NMR spectra (125 MHz) of 14 in DMSO- d_6 at 25 °C

Figure S28 ¹³C NMR spectra (125 MHz) of 15 in DMSO- d_6 at 25 °C

Figure S30 ¹³C NMR spectra (125 MHz) of 16 in DMSO- d_6 at 25 °C

6. Differential scanning calorimetry (DSC) scans of compounds 4-16

Figure S31 DSC curves of 4

Figure S32 DSC curves of 5

Figure S36 DSC curves of 9

Figure S40 DSC curves of 13

Figure S42 DSC curves of 15

Figure S43 DSC curves of 16

7. P-t curves of compounds 9, 16 and GN

Fiture S44 the P-t curves of 9, 16 and GN.

8. Specific impulse comparison

	Table 57 Specific impulse of 9, 10, GN, AP				
	I _{sp} [s] ^a	I _{sp} [s] ^a (Al 15%)	$I_{sp}[s]^a$ (Al 15%, binder 14%)		
9	233	268	231		
16	231	245	229		
GN	259	281	255		
AP ^b	156	237	261		

Table S7 Specific impulse of 9, 16, GN, AP

^a Specific impulse Isp of the neat compound and compositions with aluminium or aluminium and binder (polybutadiene acrylic 6%, polybutadiene acrylonitrile 6%, and bispheno A ether 2%) by using the EXPLO5 (Version 6.01) program package (7 Mbar, isobaric combustion, equilibrium expansion); ^b Ammonum perchlorate.^[7]

9. References

- [1] (a) Becke, A. D.; J. Phys. Chem. 1993, 98, 5648; (b) Stephens, P. J.; Devlin, F. J;
 Chabalowski, C. F.; Frisch, M. J.; J. Phys. Chem. 1994, 98, 11623.
- [2] Hariharan, P. C.; Pople, J. A.; Theoretica Chimica Acta, 1973, 28, 213.
- [3] Lide, D. R.; CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008), CRC Press/Taylor and Francis, Boca Raton, FL, 2007-2008.
- [4] N. Fischer,; Klapötke, T. M.; Stierstorfer, J.; Anorg, Z.; Allg. Chem. 2009, 635, 271.
- [5] Y. H. Joo,; Chung, J. H.; Cho, S. G.; Goh, E. M.; New J. Chem., 2013, 37, 1180.
- [6] Jenkins, H. D. B.; Tudela, D.; Glasser, L. Inorg. Chem. 2002, 41, 2364-2367.

[7] J. Tang., P. Yang, H. Yang, H. Xiong, W. Hu, G. Cheng, Chem. Eng. J. **2020**, *386*, 124027