Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Synthesis and coordination of a hybrid phosphinoferrocene sulfonamide ligand

Věra Varmužová, Filip Horký and Petr Štěpnička*

SUPPORTING INFORMATION

Contents

Additional structural diagrams	S-2
Selected crystallographic data and structure refinement parameters	S-7
Copies of the NMR spectra	S-9

Additional structural diagrams

Figure S1. PLATON plot of the molecular structure of **1** showing displacement ellipsoids at the 30% probability level.

Figure S2. View of the hydrogen-bonded dimeric motif in the structure of 1.

Figure S3. PLATON plot of the four independent molecules in the crystal structure of **2** at the 30% probability level.

Figure S4. Section of the hydrogen-bonded chains in the structure of **2** (only the NH hydrogens are shown for clarity and hydrogen bonds are indicated by dashed lines). The independent molecules are distinguished by numbers.

Figure S5. PLATON plot of the complex molecule in the structure of 4.2CHCl₃ with 30% probability ellipsoids (Note: the half of the molecule is generated by crystallographic inversion).

Figure S6. PLATON plot of the molecular structure of **5** showing 30% probability ellipsoids (Note: the half of the molecule is generated by crystallographic inversion).

Figure S7. Section of the infinite, hydrogen-bonded chain in the structure of 5.

Figure S8. PLATON plot of the molecular structure of $6 \cdot \frac{1}{2}$ CHCl₃ (30% probability ellipsoids).

Figure S9. Least-squares overlap of the independent molecules in the structure of 6.1/2 CHCl₃.

Figure S10. PLATON plot of the molecular structure of **7** (displacement ellipsoids enclose the 30% probability level).

Compound	1	2	4·2CHCl ₃
Formula	$C_{23}H_{22}FeNO_2PS$	$C_{23}H_{25}BFeNO_2PS$	$C_{48}H_{46}Cl_{10}Fe_2N_2O_4P_2Pd_2S_2$
Μ	463.29	477.13	1519.93
Crystal system	triclinic	orthorhombic	triclinic
Space group	<i>P</i> –1 (no. 2)	$Pca2_1$ (no. 29) ^d	<i>P</i> -1 (no. 2)
<i>Т</i> (К)	120(2)	120(2)	120(2)
<i>a</i> [Å]	8.8310(5)	18.5588(9)	10.8367(6)
<i>b</i> [Å]	9.6737(5)	9.0762(4)	11.5827(7)
<i>c</i> [Å]	12.2527(6)	51.788(3)	11.5985(7)
α [°]	99.502(2)	90	84.816(2)
β [°]	95.461(2)	90	75.910(2)
γ [°]	91.567(2)	90	79.007(2)
<i>V</i> [Å] ³	1026.69(9)	8723.3(7)	1384.6(1)
Ζ	2	16	1
μ(Mo Kα) [mm ⁻¹]	0.934	7.292	1.814
Diffrns collected	20233	67871	27631
Independent diffrns	4736	16364	6372
Observed ^a diffrns	4343	15405	5698
R_{int^b} [%]	2.20	3.68	2.41
No. of parameters	264	1085	326
<i>R^c</i> obsd diffrns [%]	2.49	3.19	2.49
<i>R, wR^c</i> all data [%]	2.89, 6.34	3.45, 7.98	3.03, 5.73
Δρ [e Å-3]	0.61, -0.50	0.45, -0.43	0.80, -0.64

 Table S1
 Selected crystallographic data and structure refinement parameters^a

^{*a*} Diffractions with $I > 2\sigma(I)$. ^{*b*} Definitions: $R_{int} = \Sigma |F_0^2 - F_0^2(mean)| / \Sigma F_0^2$, where $F_0^2(mean)$ denoted the average intensity of symmetry-equivalent diffractions. ^{*c*} $R = \Sigma |F_0| - |F_c|| / \Sigma |F_0|$, $wR = [\Sigma \{w(F_0^2 - F_c^2)^2\} / \Sigma w(F_0^2)^2]^{1/2}$. ^{*d*} Flack's enantiomorph parameter: 0.008(2).

Compound	5	6 ·½CHCl₃	7
Formula	$C_{46}H_{44}Cl_2Fe_2N_2O_4P_2PdS_2\\$	C _{32.5} H _{34.5} Cl _{2.5} FeN ₂ O ₂ PPdS	$C_{32}H_{33}FeN_2O_2PPdS$
Μ	1103.89	799.02	702.88
Crystal system	<i>P</i> –1 (no. 2)	<i>P</i> –1 (no. 2)	<i>P</i> 2 ₁ / <i>n</i> (no. 14)
Space group	triclinic	triclinic	monoclinic
Т(К)	120(2)	120(2)	120(2)
a [Å]	8.8684(8)	10.6520(5)	13.4617(5)
<i>b</i> [Å]	11.294(1)	16.9584(8)	13.7207(5)
<i>c</i> [Å]	12.122(1)	20.2403(9)	15.3668(7)
α [°]	101.103(2)	109.208(1)	90
β [°]	93.464(2)	101.163(2)	94.062(1)
γ [°]	105.757(2)	100.816(2)	90
<i>V</i> [Å] ³	1138.4(2)	3260.3(3)	2831.2(2)
Ζ	1	4	4
μ(Mo Kα) [mm ⁻¹]	11.166	1.348	1.312
Diffrns collected	22389	63690	43435
Independent diffrns	4447	14991	6491
Observed ^a diffrns	4157	13669	5955
R_{int}^{b} [%]	4.99	2.06	2.64
No. of parameters	278	791	365
<i>R^c</i> obsd diffrns [%]	3.84	2.67	1.99
<i>R, wR^c</i> all data [%]	4.08, 10.4	3.09, 6.37	2.31, 5.12
Δρ [e Å-3]	1.56, -0.90	1.24, -1.47	0.56, -0.56

Table S1 continued

Copies of the NMR spectra

Figure S11. ¹H NMR (400 MHz, CDCl₃) spectrum of 1.

Figure S12. ¹³C{¹H} NMR (101 MHz, CDCl₃) spectrum of **1**.

Figure S13. ³¹P{¹H) NMR (162 MHz, CDCl₃) spectrum of **1**.

Figure S14. ¹H NMR (400 MHz, CDCl₃) spectrum of 2.

Figure S15. ¹³C{¹H} NMR (101 MHz, CDCl₃) spectrum of **2**.

Figure S16. ³¹P{¹H) NMR (162 MHz, CDCl₃) spectrum of **2**.

Figure S18. ¹³C{¹H} NMR (101 MHz, dmso-d₆) spectrum of 4.

Figure S19. ³¹P{¹H) NMR (162 MHz, dmso-d₆) spectrum of **4**.

Figure S21. ¹³C{¹H} NMR (101 MHz, dmso-d₆) spectrum of 5.

Figure S22. ³¹P{¹H) NMR (162 MHz, dmso-d₆) spectrum of 5.

Figure S23. ¹H NMR (400 MHz, CDCl₃) spectrum of **6** (signals marked with * are due to residual pentane used to precipitate the product).

Figure S24. ¹³C{¹H} NMR (101 MHz, CDCl₃) spectrum of **6** (signals marked with * are due to residual pentane used to precipitate the product).

Figure S25. ³¹P{¹H) NMR (162 MHz, CDCl₃) spectrum of **6**.

Figure S27. ¹³C{¹H} NMR (101 MHz, CDCl₃) spectrum of **7**.

Figure S28. ³¹P{¹H) NMR (162 MHz, CDCl₃) spectrum of **7**.