Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

1

Supporting Information

Synthesis, polytypism, and dehydration behaviour of nitrate-intercalated layered double hydroxides of Ca and Al

Anand N. Narayanappa,^a Supreeth Nagendran,^{*b} and P. Vishnu Kamath^a

^a Department of Chemistry, Central College, Bangalore University, Bangalore 560 001, India

^b Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K

Email: supreethn4@gmail.com

Fig. S1 Comparison of PXRD patterns of as-prepared 1H and 3R polytypes of [Ca-Al-NO₃] LDH. Greater clarity arises from the expanded mid.- 2θ region of the PXRD patterns in the inset. The Bragg angles marked in blue are common to both patterns. Peaks marked with the asterisk are due to Ca(OH)₂ (18.6° 2 θ), and CaCO₃ (29.4° 2 θ) impurities.

Fig. S2 Infrared spectra of the as-prepared 1H (upper panel) and 3R (lower panel) polytypes of the [Ca-Al-NO₃] LDH.

Fig. S3 TG and DTG profiles of 1H (upper panel) and 3R (lower panel) polytypes of [Ca-Al-NO₃] LDH in flowing N_2 .

(a)

(b)

Fig. S4 SEM images of 1H, and (b) 3R polytpes.

Fig. S5 Observed PXRD pattern of the [Ca-Al-NO₃] LDH (1H polytype) compared with the DIFFaX simulated pattern for the stacking vector (0, 0, 1). Reflections marked with the asterisk correspond to CaCO₃ impurity.

Fig. S6 The reconstructed PXRD pattern compared with the reconstructed pattern obtained at ambient conditions. Reflection at 29.4° 2θ marked with an asterisk corresponds to CaCO₃ impurity.

Fig. S7 Observed PXRD pattern of the dehydrated [Ca-Al-NO₃] LDH (3R polytype) compared with the DIFFaX simulated pattern for the stacking vector (1/3, 2/3, z). Reflections marked with an asterisk (*) corresponds to CaCO₃ impurity.

Fig. S8 Variable temperature PXRD patterns of the as-prepared 3R polytype of [Ca-Al-NO₃] LDH.

1H polytype		3R polytype	
a = 5.75 Å c = 8.62 Å		a = 5.75 Å $c = 25.44 Å$	
FM(Mn) = 46.50		FM $(Mn) = 8.0$	
hkl	20	hkl	20
001	10.3	003	10.4
002	20.6	101	18.1
003	31.1	104	22.7
1 11	32.9	2 -1 0	31.1
103	36.1	2 -1 3	32.9
112	37.6	1 -1 8	33.5
004	41.9	114	34.2
113	44.6	2 -2 1	36.1
104	45.9	202	36.8
203	48.4	2 -1 6	37.8
211	49.6	2 -2 4	38.8
212	53.1	1 0 <u>10</u>	39.7
300	55.4	205	40.3
301	56.5	1 0 <u>11</u>	43.1
213	58.6	2 - 2 7	44.1
302	59.7	11 9	44.9
220	64.9	208	46.3
221	65.9	2 -3 2	48.8
310	67.9	2 -2 <u>10</u>	51.3
222	68.9	300	55.2
116	73.8	3 -3 3	56.4
215	74.6	306	59.8
400	76.5	1 0 <u>16</u>	61.2
402	80.2	4 -2 0	64.8
		226	68.9

Table S1 Observed 2θ values and corresponding indices of the as-prepared [Ca-Al-NO₃] LDHs.

Bond lengths [Å]		Bond angles [°]	
Ca–Oh	2.3953(1), 2.5042(0)	Oh-Ca-Oh	116.09, 88.761(1), 147.269(1), 64.36(1)
Ca-Ow	2.5633(1)	Oh-Al-Oh	92.174(2), 87.826(2)
Al-Oh	1.8823(0)	Oh-Ca- Ow	78.428(1), 129.971(1)
O _{N3} -Ow	2.3584(0), 2.6868(0)	O_{N1} -N- O_{N3}	116.131(1)
O _{N2} - Oh	2.5956(1), 3.1477(0)	O_{N3} -N- O_{N2}	124.754(1)
O _{N3} - Oh	2.6616(1), 3.2469(1)	O_{N2} -N- O_{N1}	119.109(1)
$N-O_{N1}$	1.2032(1)		
N-O _{N2}	1.3225(0)		
N-O _{N3}	1.3187(0)		

Table S2 Refined bond lengths and bond angles of 1H polytype of [Ca-Al-NO3] LDH.

(b) Dehydrated phase (3R polytype)

(a) As-prepared phase

Bond lengths [Å]		Bond angles [°]	
Ca–Oh	2.4611(0),	Oh-Ca-Oh	65.075(1), 88.958(1), 115.959(1),
	2.4448(1)		146.890(1)
Al-Oh	1.9099(0)	Oh-Al-Oh	87.361(2), 92.639(2)
Ca-O _{N3}	2.3444(0)	O_{N1} -N- O_{N2}	120.53(2)
N-O _{N1}	1.3373(1)	O_{N2} -N- O_{N3}	116.48(2)
N-O _{N2}	1.2017(0)	O_{N3} -N- O_{N1}	120.83(2)
N-O _{N3}	1.2053(0)		
O _{N1} - Oh	2.9695(0),		
	2.9804(0)		
O _{N2} - Oh	3.1697(0)		
O _{N3} - Oh	2.6046(0),		
	2.9973(0)		

Dehydrated phase (3R) of 1H polytype		
a = 5.76 Å, $c = 23.98$ Å, FM (Mn) = 9.73		
hkl	<u>20</u>	
003	11.1 19.2	
101	18.2	
0.06	22.3	
110	31.1	
107	31.7	
113	33.1	
108	34.9	
201	36.3	
116	38.6	
204	39.2	
205	40.8	
1 0 <u>10</u>	41.8	
207	45.0	
0 0 <u>12</u>	45.4	
119	46.5	
208	47.5	
211	48.5	
214	50.9	
300	55.4	
301	55.5	
2 0 <u>11</u>	56.1	
303	56.7	
306	60.5	
220	64.9	
2 1 <u>11</u>	65.5	
223	66.1	
1 0 <u>17</u>	69.2	
317	74.1	
2 1 <u>14</u>	75.0	
2 2 <u>12</u>	82.7	
413	91.5	
1 0 <u>22</u>	92.7	
2 1 <u>19</u>	94.7	

Table S3 Observed 2θ values and corresponding indices of the 1H polytype of [Ca-Al-NO₃] LDH obtained from temperature-induced dehydration.

Bond lengths [Å]		Bond angles [°]	
Ca-Oh	2.4651(1), 2.3020(2)	Oh-Ca-Oh	117.902(1), 91.962(6), 148.729(2), 56.965(4)
Ca-Ow	2.3599(1)	Oh-Al-Oh	97.662(4), 82.338(5)
Al-Oh	1.7302(0)	Oh-Ca- Ow	81.574(1), 125.980(3)
O _{N2} -Ow	2.9525(1)	O_{N1} -N- O_{N3}	123.245(5)
O _{N1} - Oh	3.2696(1)	O_{N2} -N- O_{N1}	115.783(4)
O _{N3} - Oh	3.1775(1)	O_{N3} -N- O_{N2}	117.882(4)
N-O _{N1}	1.1813(0)		
N-O _{N2}	1.2773(0)		
N-O _{N3}	1.1981(2)		

Table S4Refined bond lengths and bond angles of as-prepared 3R polytype of [Ca-Al-NO3]LDH.