Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Material

Design, synthesis, antibacterial activity evaluation and molecular modeling studies of new sulfonamides containing sulfathiazole moiety

Tuğba Meşeli^{a,b}, Şengül Dilem Doğan^{b*}, Miyase Gözde Gündüz^c, Zülbiye Kökbudak^a, Sanja Skaro Bogojevic^d, Theresa Noonan^e, Sandra Vojnovic^d, Gerhard Wolber^e, Jasmina Nikodinovic-Runic^d

^a Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey

^b Department of Basic Sciences, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey

^c Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, S1hhiye, 06100, Ankara, Turkey

^d Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia

^e Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany

*Corresponding author

Dr. Şengül Dilem Doğan

Address: Erciyes University Faculty of Pharmacy Department of Basic Sciences 38039 Kayseri, TURKEY

E-mail address: dogandilem@gmail.com Phone number: +90 352 2076666-28032

Contents

Table 1. Minimal inhibitory concentration (MIC, µg/mL) of SA1-SA12	3
against tested microorganisms	
Figure 1. SA7, SA11 and SA12 interaction with lambda bacteriophage DNA	4
Table 2. Feature types, interaction partners and percentage occurrence of3D pharmacophore features for SA7, SA11 and SA12 binding hypotheses overthe course of MD simulations, as calculated by the dynophore method.	5-6

 $^1\text{H-NMR}$ and $^{13}\text{C-NMR}$ spectra of SA1-SA12

7-18

meroor	gamsins.	MARCA	0	G	. .		D ·	<i>a u</i> :
Teat	S. aureus	MKSA	S. aureus	S. aureus	L.monocytogenes	E. coli	P.aeruginosa	C.albicans
1051	ATCC	ATCC	NCTC	861*	NCTC	ATCC	NCTC	ATCC
organism:	25923		6571	001				10231
	20/20	43300	0071		11994	11775	10332	10251
Compound								
SA1	100	50	60	25	>200	>200	>200	200
SA2	12.5	12.5	25	6.25	>200	>200	>200	>200
513	12.5	25	25	6.25	>200	>200	>200	>200
SAJ	12.5	23	23	0.25	/200	200	200	200
SA4	12.5	25	25	6.25	>200	>200	>200	>200
SA5	50	100	100	50	>200	>200	>200	>200
C A C	100	100	50	25	. 200	. 200	. 200	. 200
SAO	100	100	50	25	>200	>200	>200	>200
SA7	0.25	1	12.5	0.5	>200	>200	>200	>200
SA8	12.5	50	100	25	>200	>200	>200	>200
SA9	25	100	100	50	>200	>200	>200	>200
SA 10	100	100	200	50	>200	>200	>200	>200
SAIU	100	100	200	50	200	>200	200	200
SA11	0.5	6.25	12.5	2.5	>200	>200	>200	>200
SA12	6.25	2.5	6.25	2.5	>200	>200	>200	>200
СТ	> 200	> 200	> 200	150	> 200	> 200	> 200	> 200
51	>200	>200	>200	150	>200	>200	>200	>200
SD	200	>200	>200	200	>200	>200	>200	>200

Table 1. Minimal inhibitory concentration (MIC, $\mu g/mL$) of SA1-SA12 against tested microorganisms.

*: clinical isolate, **ST**-Sulfathiazole, **SD**-Sulfadiazine

Figure 1. SA7, SA11 and **SA12** interaction with lambda bacteriophage DNA (concentration of DNA 20 ng/ μ L, incubation at 37 °C for 1 h). Concentrations of compounds are 400, 200, and 100 μ M. DMSO was used as a control. M is a 1kb ladder with the highest band of 10 kbp.

Table 2. Feature types, interaction partners and percentage occurrence of 3D pharmacophore features for **SA7**, **SA11** and **SA12** binding hypotheses over the course of MD simulations, as calculated by the dynophore method.

Ligand moiety	Feature type	In	% Occurrence				
		SA7	SA11	SA12	SA7	SA11	SA12
R- substituent	Hydrophobic	F17, F172	I9, T13, F17, T51, M128, F172, A199	I9, F17, M128, F172, A199	100	83	83
	Halogen bond	N11, S50, V49, T51, Q105	N/A	N/A	7	N/A	N/A
	Aromatic	N/A	N/A	R52, K203	N/A	N/A	30
Phenyl	Hydrophobic	F17, R52, F172, K203	T13, F17, F172, K203	F17, F172, K203	83	63	90
	Aromatic	R52, K203	R52, K203, R219	F17, R52, K203	6	11	1
Sulfonyl oxygen	Hydrogen bond acceptor	R204	S50, R52, R204	R204, K207, R219	42	27	55
Sulfonyl oxygen	Hydrogen bond acceptor	R204, R219	R52, K203, R204, R219	R204, K207	46	26	2
Sulfonamide	Negative ionizable	R52, R204, K207, R219	R52, K203, R204, P216, R219	R204, K207, R219	25	76	77

Sulfonamide nitrogen	Hydrogen bond acceptor	R52, R204, R219	R52, R219	K207, R219	12	32	64
Thiazole	Hydrophobic	F17, R52, R53	T13, F17	F17	18	43	68
	Aromatic	R52, R204	F17, R52, P216, R204	N/A	2	7	N/A
Thiazole nitrogen	Hydrogen bond acceptor	R52, R219	R52, R219	R219	5	23	56
Thiophene	Hydrophobic	F17, P53, A173, P216	T13, F17, R52, K203, P216	F17, T215, P216	14	15	10
	Aromatic	N/A	N11, F17, R52, P216, R219	N/A	N/A	6	N/A

¹H NMR and ¹³C NMR spectra of **SA1**.

¹H NMR and ¹³C NMR spectra of **SA2**.

¹H NMR and ¹³C NMR spectra of **SA3**.

¹H NMR and ¹³C NMR spectra of **SA4**.

¹H NMR and ¹³C NMR spectra of **SA5**.

¹H NMR and ¹³C NMR spectra of **SA7**.

¹H NMR and ¹³C NMR spectra of **SA8**.

¹H NMR and ¹³C NMR spectra of **SA9**.

¹H NMR and ¹³C NMR spectra of **SA11**.

¹H NMR and ¹³C NMR spectra of **SA12**.

