Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting data

Identification and characterization of degradation products of Remdesivir using liquid chromatography/mass spectrometry

Degradation study	Exposure conditions	Degradation products formed
Acid hydrolysis	1 N HCl reflux at 70 °C for 6 h	DP1, DP2, DP3, DP4 and
		DP5
Alkaline hydrolysis	0.1 N NaOH at RT for 10 min	DP5, DP6, DP7 and DP8
Neutral hydrolysis	Reflux at 70 °C for 24 h	DP5
Oxidative	$3\%\mathrm{H_2O_2at}$ room temperature for 48 h	DP9
degradation		
UV light	200 Whrm ⁻²	No degradation
Fluorescent light	1.2 million lux hours	No degradation
Thermal	100 °C for 5 d	No degradation

 Table S1. Stress degradation conditions of the RDV

h-hours, d-days, min-minutes

Table S2. Elemental composition of precursor and product ions of RDV and its degradation products.

RDV and its DPS	Elemental	Theoretical	Experimental	Mass error
(Retention time in min)	composition	m/z.	m/z	(∆ ppm)
RDV(12.55)	$C_{27}H_{36}N_6O_8P^+$	603.2327	603.2333	-0.96
	$C_{21}H_{24}N_6O_8P^+$	519.1388	519.1393	-1.04
	$C_{21}H_{22}N_6O_7P^+$	501.1282	501.1287	-0.94
	$C_{20}H_{22}N_6O_6P^+$	473.1333	473.1322	2.26
	$C_{18}H_{17}N_5O_6P^+$	430.0911	430.0917	-1.38
	$C_{18}H_{29}NO_7P^+$	402.1676	402.1677	-0.1

	C ₁₈ H ₂₇ NO ₆ P ⁺	384.1571	384.1575	-1.26
	$C_{15}H_{25}NO_5P^+$	330.1465	330.1468	-0.83
	$C_{12}H_{17}NO_7P^+$	318.0737	318.0744	-2
	$C_{12}H_{15}NO_6P^+$	300.0632	300.0635	-1.3
	C ₁₂ H ₁₃ NO ₅ P ⁺	282.0523	282.0526	0.89
	$C_{12}H_{12}N_5O_3^+$	274.0935	274.0936	-0.38
	C ₁₁ H ₁₅ NO ₅ P ⁺	272.0682	272.0686	-1.25
	$C_{12}H_{10}N_5O_2^+$	256.0829	256.0831	-0.71
	C ₁₁ H ₁₃ NO ₄ P ⁺	254.0577	254.0578	-0.56
	C ₉ H ₁₃ NO ₅ P ⁺	246.0526	246.0529	-1.12
	C ₁₁ H ₉ N ₄ O ₂ ⁺	229.0720	229.0724	-1.71
	C ₉ H ₁₁ NO ₄ P ⁺	228.0420	228.0422	-0.73
	C ₉ H ₈ NO ₄ P ⁺	211.0155	211.0151	1.89
	C ₉ H ₈ N ₅ O ⁺	202.0723	202.0726	-1.13
	C ₈ H ₁₁ NOP ⁺	200.1471	200.1473	-1.16
	C ₈ H ₇ N4O ⁺	175.0614	175.0618	-1.93
	C ₉ H ₂₀ NO ₂ ⁺	174.1489	174.1490	-0.67
	C ₇ H ₇ N ₄ ⁺	147.0665	147.0668	-1.71
	C ₃ H ₈ NO ₂ ⁺	90.0550	90.0550	-0.52
	C ₂ H ₆ N ⁺	44.0495	44.0493	3.99
DP1(3.21)	$C_{12}H_{15}N_5O_7P^+$	372.0704	372.0720	-4.35
	$C_{12}H_{13}N_5O_6P^+$	354.0598	354.0597	0.4
	$C_{11}H_{14}N_4O_7P^+$	345.0595	345.0610	-4.42
	C ₁₂ H ₁₂ N ₅ O ₃ ⁺	274.0935	274.0934	0.09
	$C_{12}H_{10}N_5O_2^+$	256.0829	256.0839	-4.04

	$C_{11}H_9N_4O_2^+$	229.0720	229.0723	-1.12
	$C_9H_8N_5O^+$	202.0723	202.0727	-1.91
	$C_8H_7N_4O^+$	175.0614	175.0619	-2.75
	$C_3H_8O_6P^+$	171.0053	171.0053	-0.03
	$C_{17}H_7N_4^+$	147.0665	147.0670	-3
	$H_4O_4P^+$	98.9842	98.9844	-2.23
DP2(6.52)	$C_{12}H_{14}N_5O_4^+$	292.1040	292.1048	-2.59
	$C_{12}H_{12}N_5O_3^+$	274.0935	274.0926	3.07
	$C_{11}H_{13}N_4O_4^+$	265.0931	265.0928	1.1
	$C_{11}H_{11}N_4O_3^+$	247.0826	247.0817	3.35
	$C_9H_8N_5O^+$	202.0723	202.0722	0.69
	$C_8H_7N_4O^+$	175.0614	175.0615	-0.46
	$C_7H_7N_4^+$	147.0665	147.0667	-1.26
	$C_6H_6N_4^+$	134.0587	134.0588	-0.85
	$C_5HN_2^+$	92.0369	92.0368	0.8
DP3(7.85)	$C_{18}H_{19}N_5O_7P^+$	448.1017	448.1030	-2.96
	$C_{18}H_{17}N_5O_6P^+$	430.0911	430.0927	-3.62
	$C_{17}H_{18}N_4O_7P^+$	421.0908	421.0911	-0.84
	$C_{18}H_{15}N_5O_5P^+$	412.0805	412.0828	-5.55
	$C_{17}H_{16}N_4OP^+$	403.0802	403.0818	-3.91
	$C_{12}H_{12}N_5O_3^+$	274.0935	274.0934	0.18
	C ₁₂ H ₁₀ N ₅ O ₂ ⁺	256.0829	256.0833	-1.53
	C ₉ H ₁₂ O ₆ P ⁺	247.0366	247.0370	-1.71
	$C_{11}H_9N_4O_2^+$	229.0720	229.0723	-1.23
	C ₉ H ₈ N ₅ O ⁺	202.0723	202.0727	-1.7

	$C_8H_7N_4O^+$	175.0614	175.0617	-1.66
	$C_3H_6O_5P^+$	152.9947	152.9937	6.76
	$C_{7}H_{7}N_{4}^{+}$	147.0665	147.0666	-0.22
DP4(9.37)	$C_9H_{20}NO_2^+$	174.1489	174.1495	-3.47
	C ₃ H ₈ NO ₂ ⁺	90.0550	90.0551	-1.49
	$C_{6}H_{13}^{+}$	85.1012	85.1012	-0.67
	C ₄ H ₉ +	57.0699	57.0698	1.22
	C ₂ H ₆ N ⁺	44.0495	44.0493	5.01
	C ₃ H ₇ ⁺	43.0542	43.0542	1.55
	C ₃ H ₅ +	41.0386	41.0385	1.03
DP5(10.47)	C ₂₇ H ₃₈ N ₆ O ₉ P ⁺	621.2432	621.2439	-1.13
	C ₁₈ H ₂₉ NO ₇ P ⁺	402.1676	402.1664	2.91
	C ₁₈ H ₂₇ NO ₆ P ⁺	384.1571	384.1565	1.45
	C ₁₅ H ₂₅ NO ₅ P ⁺	330.1465	330.1447	5.36
	C ₁₂ H ₁₇ NO ₇ P ⁺	318.0737	318.0734	0.68
	$C_{12}H_{15}NO_6P^+$	300.0632	300.0644	-4.05
	$C_{12}H_{14}N_5O_4P^+$	292.1040	292.1040	-0.03
	$C_{12}H_2N_5O_3^+$	274.0935	274.0938	-1.24
	$C_{11}H_{15}NO_5P^+$	272.0682	272.0684	-0.74
	$C_{11}H_{13}NO_4P^+$	254.0577	254.0587	-3.93
	$C_{11}H_{11}N_4O_3^+$	247.0826	247.0819	2.78
	$C_9H_{13}NO_5P^+$	246.0526	246.0527	-0.39
	$C_{11}H_9N_4O_2^+$	229.0720	229.0717	1.14
	C ₉ H ₁₁ NO ₄ P ⁺	228.0420	228.0416	1.81
	$C_9H_{10}N_5O_2^+$	220.0829	220.0827	0.83

	$C_9H_7N_4O_2^+$	203.0564	203.0563	0.25
	$C_8H_{11}NO_3P^+$	200.0471	200.0467	1.98
	$C_8H_7N_4O^+$	175.0614	175.0616	-1.01
	C ₉ H ₂₀ NO ₂ ⁺	174.1489	174.1492	-2.06
	C ₇ H ₇ N ₄ ⁺	147.0665	147.0672	-4.81
	C ₃ H ₈ NO ₂ ⁺	90.0550	90.0551	-1.5
	C ₂ H ₆ N ⁺	44.0495	44.0495	0.78
DP6(5.31)	$C_{15}H_{20}N_6O_8P^+$	443.1075	443.1084	-2
	C ₁₅ H ₁₈ N ₆ O ₇ P ⁺	425.0969	425.0975	-1.42
	C ₁₂ H ₁₃ N ₅ O ₆ P ⁺	354.0598	354.0613	-4.17
	$C_{12}H_{12}N_5O_3^+$	274.0935	274.0932	1.51
	$C_{12}H_{10}N_5O_2^+$	256.0829	256.0841	-4.79
	C ₆ H ₁₃ NO ₇ P ⁺	242.0426	242.0425	-0.52
	$C_{11}H_9N_4O_2^+$	229.0720	229.0720	0.01
	C ₆ H ₁₁ NO ₆ P ⁺	224.0319	224.0320	-0.68
	C ₉ H ₈ N ₅ O ⁺	202.0723	202.0727	-1.63
	C ₅ H ₁₁ NO ₅ P ⁺	196.0369	196.0374	-2.5
	C ₅ H ₉ NO ₄ P ⁺	178.0264	178.0258	2.98
	C ₈ H ₇ N ₄ O ⁺	175.0614	175.0608	3.81
	C ₃ H ₉ NO ₅ P ⁺	170.0213	170.0212	0.24
	C ₇ H ₇ N ₄ ⁺	147.0665	147.0667	-1.22
	C ₂ H ₇ NO ₃ P ⁺	124.0158	124.0159	-0.98
	C ₃ H ₈ NO ₂ ⁺	90.0550	90.0551	-1.29
	C ₂ H ₆ N	44.0495	44.0494	1.52
DP7(8.87)	C ₂₁ H ₂₄ N ₆ O ₈ P ⁺	519.1388	519.1381	1.3

	$C_{21}H_{22}N_6O_7P^+$	501.1282	501.1272	0.93
	$C_{20}H_{22}N_6O_6P^+$	473.1333	473.1329	0.89
	$C_{18}H_{17}N_5O_6P^+$	430.0911	430.0899	2.7
	C ₁₂ H ₁₇ NO ₇ P ⁺	318.0737	318.0745	-2.46
	C ₁₂ H ₁₅ NO ₆ P ⁺	300.0632	300.0634	-0.91
	C ₁₂ H ₁₃ NO ₅ P ⁺	282.0526	282.0532	-2.28
	C ₁₂ H ₁₂ N ₅ O ₃ ⁺	274.0935	274.0936	-0.61
	C ₁₁ H ₁₅ NO ₅ P ⁺	272.0682	272.0688	-2.04
	$C_{12}H_{10}N_5O_2^+$	256.0829	256.0831	-0.84
	C ₁₁ H ₁₃ NO ₄ P ⁺	254.0577	254.0582	-2.04
	C ₉ H ₁₃ NO ₅ P ⁺	246.0526	246.0530	-1.87
	C ₁₁ H ₉ N ₄ O ₂ ⁺	229.0720	229.0723	-1.47
	C ₉ H ₁₁ NO ₄ P ⁺	228.0420	228.0410	4.69
	C ₉ H ₈ N ₅ O ⁺	202.0723	202.0728	-2.13
	C ₈ H ₁₁ NO ₃ P ⁺	200.0471	200.0473	-1.2
	C ₈ H ₇ N4O ⁺	175.0614	175.0624	-5.52
	C ₇ H ₇ N ₄ ⁺	147.0665	147.0670	-3.03
	C ₃ H ₈ NO ₂ ⁺	90.0550	90.1547	3.04
	C ₂ H ₆ N ⁺	44.0495	44.0493	3.65
DP8(9.86)	C ₂₁ H ₃₂ N ₆ O ₈ P ⁺	527.2014	527.2000	2.52
	C ₁₅ H ₂₀ N ₆ O ₈ P ⁺	443.1075	443.1090	-3.49
	C ₁₅ H ₁₈ N ₆ O ₇ P ⁺	425.0969	425.0971	-0.54
	C ₁₂ H ₁₃ N ₅ O ₆ P ⁺	354.0598	354.0603	-1.38
	C ₁₂ H ₂₅ NO ₇ P ⁺	326.1363	326.1373	-2.97
	C ₁₂ H ₂₃ NO ₆ P ⁺	308.1258	308.1262	-1.57

	$C_{12}H_{12}N_5O_3^+$	274.0935	274.0941	-2.22
	$C_{12}H_{10}N_5O_2^+$	256.0829	256.0837	-3.29
	C ₉ H ₂₁ NO ₅ P ⁺	254.1152	254.1162	-4.15
	C ₆ H ₁₃ NO ₇ P ⁺	242.0424	242.0430	-2.59
	$C_{11}H_9N_4O_2^+$	229.0720	229.0726	-2.63
	C ₆ H ₁₁ NO ₄ P ⁺	224.0319	224.0324	-2.32
	$C_9H_8N_5O^+$	202.0723	202.0729	-2.84
	C ₅ H ₁₁ NO ₅ P ⁺	196.0369	196.0374	-2.42
	$C_5H_9NO_4P^+$	178.0264	178.0268	-2.6
	C ₈ H ₇ NO ₄ P ⁺	175.0614	175.0618	-2.14
	C ₉ H ₂₀ NO ₄ ⁺	174.1489	174.1493	-2.63
	$C_3H_9NO_5P^+$	170.0213	170.0218	-3.03
	C ₃ H ₇ NOP ⁺	152.0107	152.0114	-4.3
	$C_{7}H_{7}N_{4}^{+}$	147.0665	147.0668	-1.69
	$C_2H_7NO_3P^+$	124.0158	124.0160	-1.87
	C ₃ H ₈ NO ₂ ⁺	90.0550	90.0551	-1.47
	$C_2H_6N^+$	44.0495	44.0493	4.02
DP9(11.96)	$C_{27}H_{36}N_6O_9P^+$	619.2276	619.2293	-2.31
	$C_{21}H_{24}N_6O_9P^+$	535.1337	535.1306	5.71
	C ₂₀ H ₂₂ N ₆ O ₇ P ⁺	489.1282	489.1274	1.57
	$C_{18}H_{17}N_5O_7P^+$	446.086	446.0881	-4.6
	C ₁₈ H ₂₉ NO ₇ P ⁺	402.1676	402.1675	0.3
	C ₁₈ H ₂₇ NO ₆ P ⁺	384.1571	384.1581	-2.76
	C ₁₅ H ₂₅ NO ₅ P ⁺	330.1465	330.1474	-2.78
	C ₁₂ H ₁₇ NO ₇ P ⁺	318.0737	318.0741	-1.3

$C_{12}H_{15}NO_6P^+$	300.0632	300.0635	-1.02
$C_{12}H_{12}N_5O_4^+$	290.0884	290.0889	-1.93
$C_{11}H_{15}NO_5P^+$	272.0682	272.0682	0.3
$C_{11}H_{13}NO_4P^+$	254.0577	254.0574	1.2
$C_9H_{13}NO_5P^+$	246.0526	246.0525	0.32
$C_{11}H_9N_4O_3^+$	245.0669	245.0676	-2.68
$C_9H_{11}NO_4P^+$	228.0420	228.0414	2.56
$C_9H_8N_5O_2^+$	218.0673	218.0673	-0.21
$C_8H_{11}NO_3P^+$	200.0471	200.0476	-2.62
$C_{8}H_{7}N_{4}O_{2}^{+}$	191.0564	191.0565	-0.82
$C_9H_{20}NO_2^+$	174.1489	174.1483	2.91
$C_3H_8NO_2^+$	90.0550	90.0553	-3.93
$C_2H_6N^+$	44.0495	44.0494	0.72

Figure S1. ¹H - NMR spectrum of RDV (400 MHz, MeOD): δ 8.31 (s, 1H), 7.78 – 7.70 (m, 2H), 7.66 – 7.56 (m, 3H), 7.35 (d, 1H), 7.32 (d, 1H), 5.23 (d, 1H), 4.87 – 4.78 (m, 2H), 4.73 (ddd, 1H), 4.61 (t, 1H), 4.46 (dd, 5.8 Hz, 1H), 4.40 – 4.28 (m, 2H), 1.89 (m, 1H), 1.83 – 1.65 (m, 8H), 1.29 (t, 6H).

Figure S2.FTIR spectrum of RDV (KBr)

3429.36 cm⁻¹observed due to N-H stretching of primary amine

3324.68 cm⁻¹observed due to N-H stretching of secondary amine

3177.26 cm⁻¹observed due to O-H (intermolecular hydrogen bonding) stretching of alcohol

1724.82 cm⁻¹observed due to C=O stretching of ester

Figure S3.Extracted ion chromatograms (EICs) of (a) RDV(603.2333), (b) RDV (603.2333), DP1 (372.0720), DP2(292.1048), DP3(448.1030), DP4(174.1495), andDP5(621.2439),(c) RDV(603.2333), DP5(621.2439), DP6(443.1084), DP7(519.1381), andDP8 (527.2000),(d) RDV (603.2333), and DP5 (621.2439), (e) RDV (603.2333), and DP9 (619.2293).

Figure S4. Total ion chromatograms (TICs) of (a) RDV, (b) acid degradation, (c) base degradation, (d) neutral degradation, (e) oxidative degradation, (f) thermal degradation, (g) photo degradation, and (h) blank

Figure S5. UHPLC-ESI-MS/MS spectra of [M+H]⁺of (i) RDV (*m/z* 603), (ii) DP1 (*m/z*372), (iii) DP2 (*m/z*292), (iv) DP3 (*m/z*448), (v) DP4 (*m/z*174), (vi) DP5 (*m/z*621), (vii) DP6 (*m/z*443), (viii) DP7 (*m/z*519), (ix) DP8 (*m/z*527), and (x) DP9 (*m/z*619)

Figure S6. ESI-Pseudo- MS³spectra ofions at i) m/z402, ii) m/z318, iii) m/z300, and iv) m/z202.

Scheme S1. Proposed fragmentation pathway for [M+H]⁺ of DP1.

Scheme S2. Proposed fragmentation pathway for $[M+H]^+$ of DP2.

Scheme S3. Proposed fragmentation pathway for [M+H]⁺ of DP3.

Scheme S4.Proposed fragmentation pathway for [M+H]⁺ of DP4.

Scheme S5. Proposed fragmentation pathway for $[M+H]^+$ of DP5.

Scheme S6.Proposed fragmentation pathway for [M+H]⁺ of DP7.

Scheme S7. Proposed fragmentation pathway for $[M+H]^+$ of DP8.

Scheme S8.Proposed fragmentation pathway for [M+H]⁺ of DP9.