Supporting Information

Naphthalimide-decorated imino-phenol: Supramolecular gelation and selective sensing of Fe³⁺ and Cu²⁺ ions under different experimental conditions

Sumit Ghosh¹, Nabajyoti Baildya¹, Narendra Nath Ghosh² and Kumaresh Ghosh^{1*}

¹Department of Chemistry, University of Kalyani, Kalyani-741235, India. Email: <u>ghosh_k2003@yahoo.co.in</u> ²Department of Chemistry, University of Gour Banga, Malda-732103, India

Solvent	1			
DMSO	S			
DMF	S			
THF	S			
CH ₃ CN	Ι			
CH ₃ OH	Ι			
CHCl ₃	S			
Benzene	Ι			
CHCl ₃ : CH ₃ OH (1:1, v/v)	Р			
Diethyl ether	Ι			
Hexane	Ι			
Petroleum ether	Ι			
DCM	S			
DMSO: H ₂ O (1:1, v/v)	G (10 mg/mL)			
DMF: H ₂ O (1:1, v/v)	G (8 mg/mL)			
THF: H ₂ O (1:1, v/v)	Р			
CH ₃ CN: H ₂ O (1:1, v/v)	Р			
Diox: H ₂ O (1:1, v/v)	Р			
S = Solution; G = Gel (mgc); I = Insoluble; P =				
Precipitation; Gelation was primarily investigated				
by inversion of vial method after 10-15 mins of				
sample preparation ([Gelator] = 20 mg/mL).				

Table S1. Results of gelation test for 1.

Fig. S1. Pictorial representation of the thermo reversibility of the (a) DMF- $H_2O(1:1, v/v)$ and (b) DMSO- $H_2O(1:1, v/v)$ gels of **1**.

Fig. S2. Partial FTIR spectra of 1 in (a) amorphous and (b) gel state.

Fig. S3. Photograph showing the phase changes of DMF-H₂O (1:1, v/v) gel of **1** at different pHs; (b) Photograph showing the phase changes of DMSO-H₂O (1:1, v/v) gel of **1** (at mgc value) in the presence of 1 equiv. amount of different metal ions after 1h [(i) Fe³⁺, (ii) Ag⁺, (iii) Zn²⁺, (iv) Pb²⁺, (v) Fe²⁺, (vi) Hg²⁺, (vii) Co²⁺, (viii) Ni²⁺, (ix) Al³⁺, (x) Cd²⁺, (xi) Cu²⁺ and (xii) Ca²⁺ ions. Fe²⁺ and Pb²⁺ are used as perchlorate salts and others are as nitrate salts].

Fig. S4. Change in emission of compound 1 ($c = 2.5 \times 10^{-5} \text{ M}$) upon addition of different metal ions ($c = 1 \times 10^{-3} \text{ M}$ in DMF-H₂O (1:1, v/v).

Fig. S5. (a) Benesi–Hildebrand plot and (b) detection limit of $1 (c = 2.5 \times 10^{-5} \text{ M})$ for Cu²⁺ ion at 455 nm ($c = 1.0 \times 10^{-3} \text{ M}$) in CH₃CN from UV-vis titration.

Fig. S6. (a) Benesi–Hildebrand plot and (b) detection limit of $\mathbf{1}$ ($c = 2.5 \times 10^{-5} \text{ M}$) for Cu²⁺ ion at 545 nm ($c = 1.0 \times 10^{-3} \text{ M}$) in CH₃CN from fluorescence titration.

Fig. S7. (a) Benesi–Hildeband plot, (b) detection limit of **1** ($c = 2.5 \times 10^{-5} \text{ M}$) for Cu²⁺ ion at 464 nm ($c = 1.0 \times 10^{-3} \text{ M}$) in CH₃CN: H₂O (4:1, v/v) from UV-vis titration.

Fig. S8. (a) Benesi–Hildebrand plot and (b) detection limit of 1 ($c = 2.5 \times 10^{-5} \text{ M}$) for Cu²⁺ ion at 563 nm ($c = 1.0 \times 10^{-3} \text{ M}$) in CH₃CN: H₂O (4:1, v/v) from fluorescence titration.

Fig. S9. Partial ¹H NMR (400 MHz, d₆-DMSO) of (A) (a) compound **1** (c = 6.8×10^{-3} M), (b) **1** with 1 equiv. Cu(ClO₄)₂ and (c) **1** with 2 equiv. Cu(ClO₄)₂ and (B) (a) compound **1** (c = 6.8×10^{-3} M), (b) **1** with 1 equiv. Fe(ClO₄)₃ and (c) **1** with 2 equiv. Fe(ClO₄)₃.

Table S2. Simulated absorption wavelengths (λ_{max} in nm), oscillator strengths (f), and the composition of the corresponding electronic transitions (H = HOMO; L = LUMO) calculated using B3LYP/6-31g(d) for non aggregated forms and B3LYP-D3 dispersion corrected hybrid function for aggregated forms.

Compound	λ_{max}	f	3	Main compositions
			(10 ⁴)	(contribution)
	352 (expt)	0.28	2.84	H→L+3 (87%)
1 in DMF	423 (expt)	0.35	2.36	H-2→L (66%), H→L+1 (25%)
	648 (expt)	0.56	1.54	H→L (100%)
1 in DMF-1H ₂ O	492 (473) ^a	0.74	2.03	H→L (99%)
1 in DMF-2H ₂ O	500 (473) ^a	0.78	1.99	H→L (99%)
1 aggregated DMF- H ₂ O	432 (448) ^a	0.51	2.31	H→L (57%), H→L+1 (41%)
1 aggregated water bridging DMF-H ₂ O	433 (448) ^a	0.27	2.31	H-1→L (47%), H→L+1 (38%)
1 in CH ₃ CN	479 (473) ^a	0.77	2.08	H→L (99%)
1 with Cu ²⁺ in CH ₃ CN	497 (473) ^a	0.12	2.01	H-2→L (18%), H→L (20%), H→L+1 (28%)

Table S3: Reported structures for Cu²⁺ sensing in solution phase by imino-phenol compounds.

Entry	Structure of sensor	Detection media	solvent	Detection limit	Interferen ce from other metal ions	Ref.
1		solution	DMSO:H₂O (1:9, v/v)	20 nM	-	1

2	НО	Solution	DMSO:H ₂ O (8:2, v/v)	2.17 x 10 ⁻⁶ M		2
				3.19 x 10⁻ ⁶ M	Fe ³⁺	
3	$\left(\begin{array}{c} \\ H \\ $	Solution	CH₃CN	-	-	3
4	OH HO	Solution	CH ₃ CN:H ₂ O (8:2, v/v)	5 x 10 ⁻⁶ M	-	4
5		Solution	CH ₃ CN:H ₂ O (2:3, v/v)	2.95 × 10 ⁻⁵ M	-	5
6	S N OH	Solution	CH₃CN	2x 10 ⁻⁶ M	-	6
7	NC N	Solution	DMSO:H ₂ O (3:7, v/v)	2.4x10 ⁻⁶ M	-	7
8		Solution	THF:H ₂ O (9:1, v/v)	1 ×10 ⁻⁶ M	-	8
9		Solution	CH₃CN	-	-	9

10	N-	Solution	Aqueous	-	-	10
	NH		solution			
	OH OH					
11	HO	Solution	MeOH:H ₂ O	1 ×10 ⁻⁵ M	-	11
	N=		(6:4 <i>,</i> v/v)			
	N N N N N N N N N N N N N N N N N N N					
12		Solution		0.8 ×10-7 M	Eo ³⁺	12
12	OH N	301011011		9.8 × 10 ° 101	re-	12
	N					
	но					
12		Solution		E 00 v10-9 M	Eo ³⁺ Hg ²⁺	12
15		301011011		3.99 ×10 101	re, ng	15
	N C ₁₂ H ₂₅ O OC ₁₂ H ₂₅					
14	1	Solution	Tris-buffer	11.2 nM	-	14
	C		(25 mM, pH			
	N OH N		= 7.4) solution			
			301011011			
	но он но оп					
15	CH ₃	Solution	EtOH:H ₂ O	-	-	15
			(3:1, V/V)			
	N V					
	ОН					
	ÓC₂H₅					
This work		Solution	$CH_3CN:H_2O$ (4.1 v/v)	4.13 x 10 ⁻⁷ M	-	-
WORK	0 X N X O		(4.1, 0/0)			
	NH N					
	UT UH					

Table S4: Reported structures for Fe³⁺ sensing in gel phase.

Entry	Gelator structure	Detection media	solvent	Sensing mechanism	Interference from other metal ions	Ref.
1		Gel	H ₂ O	Sol to gel transition	Fe ²⁺	16

2		Gel	H ₂ O	Fluorescenc e OFF Gel-to-Gel state	-	17
3		Gel	CH ₃ CN:H ₂ O (1:1, v/v)	Visual detection through gel-to sol transition	Cu ²⁺	18
4		Gel	CH ₃ CN:H ₂ O (1:1, v/v)	Visual detection through gel-to sol transition	-	18
5		Gel	DMSO:H2O (1:1, v/v)	Visual detection through color change	-	18
6	$R = \frac{1}{4} \left(\frac{H}{H} \right) \frac{1}{H}$	Gel	CHCl₃:MeOH (3:1, v/v)	Visual detection through sol-to gel transition	Ag⁺	19
7	$\overset{\mathcal{A}}{\longrightarrow} \bigcup \underset{\mathbf{N}_{Y_{W}}}{\longrightarrow} \bigcup \overset{\mathcal{S}}{\longrightarrow} \overset{\mathcal{H}}{\longrightarrow} \underset{\mathcal{C}_{12}\mathcal{H}_{20}}{\longrightarrow} \overset{\mathcal{C}}{\longrightarrow} \overset{\mathcal{C}}{\to} \overset{\mathcal{C}}{\longrightarrow} \overset{\mathcal{C}}{\longrightarrow} \overset{\mathcal{C}}{\to} \overset{\mathcal{C}}{\to} \mathcal{C$	Gel	CH₃CN	Visual detection through gel-to gel transition	Hg ²⁺ , Cu ²⁺	13
8		Gel	MeOH	Visual detection through gel-to gel transition	-	20

This		Gel	DMF:H ₂ O	Visual	Fe ³⁺	-
work	0		(1:1, v/v)	detection		
				through		
				Gel-to		
	r ⁱⁿ			sol		
	СССОН			transition		

¹H NMR (CDCl₃ with 1 drop *d*₆-DMSO, 400 MHz) of 1

¹³C NMR (CDCl₃ with 1 drop d₆-DMSO, 100 MHz) of 1

Mass spectrum of 1.

Reference

- 1. T. Anand, G. Sivaraman and D. Chellappa, J. Photochem. Photobiol. A, 2014, 281, 47.
- Y. R. Bhorge, H. T. Tsai, K. F. Huang, A. J. Pape, S. N. Janaki, Y. P. Yen, *Spectrochim Acta A.*, 2014, 130, 7.
- 3. H. M. Chawla, P. Goel and P. Munjal, Tetrahedron Lett., 2015, 56, 682.
- 4. S. Goswami, S. Maity, A. K. Das and A. C. Maity, Tetrahedron Lett., 2013, 54, 6631.
- 5. J. HY, P. GJ, N. YJ, C. YW, Y. GR and K. C, Dyes. Pigm., 2014, **109**, 127.
- 6. N. Kaura, J. Singha, G. Dhaka, R. Rani and V. Luxami, Supramol. Chem., 2015, 27, 453.
- 7. S. A. Lee, J. J. Lee, J. W. Shin, K. S. Min and C. Kim, Dyes. Pigm., 2015, 116, 131.
- 8. N. Singh, N. Kaur, B. McCaughan and J. F. Callan, *Tetrahedron Lett.*, 2010, **51**, 3385.
- 9. P. Singh, H. Singh, G. Bhargava and S. Kumar, J. Mater. Chem. C, 2015, 3, 5524.
- 10. J. S. Wu, P. F. Wang, X. H. Zhang and S. K. Wu, Spectrochim Acta. A, 2006, 65, 749.
- 11. H. Xu, X. Wang, C. Zhang, Y. Wu and Z. Liu, Inorg. Chem. Commun., 2013, 34, 8.
- 12. N. Narayanaswamy and T. Govindaraju, Sensor Actuat. B-Chem., 2012, 161, 304.
- 13. X. Cao, Y. Li, Y. Yu, S. Fu, A. Gao and X. Chang, Nanoscale, 2019, 11, 10911.
- 14. B. Naskar, R. Modak, D. K. Maiti, A. Bauzá, A. Frontera, P. K. Maiti, S. Mandal and S. Goswami, *RSC Adv.*, 2017, **7**, 11312.
- 15. G. T. Tigineh and L.-K. Liu, Bull. Chem. Soc. Ethiop., 2017, **31**, 31.
- 16. J. –L. Zhong, X. –J. Jia, H. –J. Liu, X. –Z. Luo, S. –G. Hong, N. Zhanga and J. –B. Huang, *SoftMatter*, 2016, **12**, 191.
- 17. J.–F. Chen, Q. Lin, H. Yao, Y. –M. Zhang and T. –B. Wei, *Mater. Chem. Front.*, 2018, **2**, 999.
- 18. A. Panja and K. Ghosh, *Mater. Chem. Front.*, 2018, **2**, 1866.
- 19. A. Panja and K. Ghosh, *Mater. Chem. Front.*, 2018, **2**, 2286.
- 20. H. Jain, N. Deswal, A. Joshi, C. N. Ramachandran and R. Kumar, Anal. Methods, 2019, 11, 3230.