Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary information

Aiding the versatility of simple ammonium ionic liquid by the synthesis of bioactive 1,2,3,4-tetrahydropyrimidine, 2-aminothiazole and quinazolinones derivatives.

Praachi Kakati, Preeti Singh, Priyanka Yadav, Satish Kumar Awasthi*

Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, INDIA

Table of contents

Contents	Page			
	No.			
Experimental	S2			
Refinement model description	S2			
Table S1 Crystal data and structure refinement for compound 4k	S2-S3			
Table S2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic	S3-S5			
Displacement Parameters (Å ² ×10 ³) for compound 4k. U _{eq} is defined as 1/3 of				
the trace of the orthogonalised U_{IJ} tensor.				
Table S3 Bond Lengths for compound 4k.	S5			
Table S4 Bond Angles for compound 4k.	S5-S6			
Single crystal X-Ray Diffraction (XRD) Analysis of 4k	S6-S8			
Table S5 Calculation for green chemistry metrics for compound 4a.	S8-S10			
Green chemistry parameters	S10			
Figure S4: Illustration of compound 6j along (100), (010), (110) directions	S11			
Table S6 Crystal data and structure refinement for compound 6j.	S11-S12			
Table S7. Fractional Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic				
Displacement Parameters (Å ² ×10 ³) for compound 6j . U_{eq} is defined as 1/3 of the				
trace of the orthogonalised U_{IJ} tensor.				
Table S9 Anigotropia Dignlessment Decemptors $(^{1}2\times 10^{3})$ for 6: The	<u><u><u></u></u> <u></u> <u></u></u>			
Table S6. Anisotropic Displacement Farameters $(A^2 \wedge 10^2)$ for 0 . The Anisotropic displacement factor exponent takes the form:	514-515			
Anisotropic displacement factor exponent takes the form $2\pi^{2}[h_{20}*2U11+2h_{20}*h_{20}*h_{11}]$				
$2\pi^{2}$ [12a 2011+21ka 0 012+].				
Table S9. Bond Lengths for 6j.	S15-S16			
Table S 10. Bond Angles for 6j.	S16			
Table S 11. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement	S17			
Parameters ($Å^2 \times 10^3$) for 6j .				
Table S12. Comparing excellence of [Et ₃ NH][HSO ₄] with previously reported	S118			
catalysts for the synthesis of 2-aminothiazoles.				

Table S13. Comparing excellence of [Et ₃ NH][HSO ₄] with previously reported catalysts for the synthesis of guinazolinones.				
Recyclability of IL [Et ₃ NH][HSO ₄]	S18-S19			
¹ H NMR, ¹³ C NMR and ESI - MS spectra of compounds (4a-4o), (6a-6l) and	S20-			
(10a-10f).	S106			
References				

Experimental

Single crystals of compound **4k and 6j** were operated. A suitable crystal was selected and was operated on a Xcalibur, Sapphire3 diffractometer. The crystal was kept at 298.8(6) K during data collection. Using Olex2¹, the structure was solved with the olex 2.solve² structure solution program using Charge Flipping and refined with the olex 2. refine.² refinement package using Gauss-Newton minimisation.

Refinement model description

Number of restraints - 0

Number of constraints - 0

 Table S1 Crystal data and structure refinement for compound 4k

CCDC Number	CCDC 1959600
Molecular Formula	$C_{14}H_{15}CIN_2O_3$
Molecular weight	294.73
Temperature	298.8(6)
Radiation	Mo Kα (λ = 0.71073)
Crystal system	Triclinic
Space group	P-1

Unit cell dimensions	$a/Å = 12.4372(5); \alpha/\circ = 90$
	$b/Å = 7.2932(2); \beta/\circ = 108.876(4)$
	$c/Å = 16.2417(6); \Upsilon/^{\circ} = 90$
Volume /Å ³	1394.01(9)
Ζ	1
Density (pcalcg/cm ³)	1.3322
Absorption coefficient (μ /mm ⁻¹)	0.280
F(000)	556.9
2θ range for data collection	6.66 to 59.2
Index ranges	$-16 \le h \le 15, -9 \le k \le 10, -22 \le l \le 22$
Reflections collected	21213
Independent reflections	$6822 [R_{int} = 0.0810, R_{sigma} = 0.0717]$
Data/restraints/parameters	6822/0/161
Refinement method	Full-matrix
	least-squares on F2
Goodness-of-fit on F ²	2.607
Final R indexes [I>=2 σ (I)]	R1 = 0.1831, wR2 = 0.4501
Final R indexes [all data]	R1 = 0.2272, wR2 = 0.4857
Largest diff. peak/hole / e Å ⁻³	3.02/-3.09

Table S2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for compound **4k**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Z	U _{eq}
Cl01	10561(2)	-1519(3)	6071.8(17)	80.9(8)
C102	4435(2)	3481(3)	8931.3(17)	78.5(8)
O003	7707(4)	9481(6)	7595(3)	41.1(11)
O004	7293(4)	4484(6)	7399(3)	41.2(11)
O005	2997(4)	7635(6)	5123(3)	43.5(11)

O006	12007(4)	2633(6)	9876(3)	43.1(11)
O007	12145(4)	5592(7)	10173(3)	53.2(13)
O008	2854(4)	10591(7)	4828(3)	55.4(14)
N009	6134(4)	7857(7)	6888(3)	33.0(12)
N00A	8905(4)	6034(7)	8158(3)	33.8(12)
N00B	8871(4)	2866(7)	8119(3)	33.7(12)
N00C	6097(4)	11036(7)	6843(3)	36.5(12)
C00D	8317(5)	4426(8)	7866(4)	34.6(14)
COOE	4391(5)	7529(8)	7280(4)	31.2(13)
C00F	4873(5)	7786(8)	6539(4)	32.3(13)
C00G	4446(5)	9465(7)	5985(4)	29.7(13)
СООН	6684(5)	9428(8)	7138(4)	34.1(14)
COOI	10553(5)	4490(8)	9008(4)	30.5(13)
C00J	10607(5)	2526(8)	7727(4)	32.3(13)
C00K	5057(5)	11057(8)	6183(4)	32.3(13)
C00L	9948(5)	6049(8)	8823(4)	33.3(14)
C00M	10126(5)	2790(8)	8468(4)	33.4(14)
C00N	11629(5)	4355(8)	9735(4)	35.2(14)
C00O	3381(5)	9354(8)	5266(4)	35.2(14)
COOP	10414(6)	844(9)	7286(4)	43.1(16)
C00Q	4586(6)	5862(9)	7700(4)	41.0(15)
C00R	4741(6)	12850(9)	5753(4)	45.4(17)
C00S	10262(6)	7857(10)	9254(5)	47.4(17)
СООТ	3773(6)	8871(10)	7515(5)	47.5(17)
C00U	11228(6)	3872(10)	7484(5)	47.9(17)
C00V	10831(6)	583(10)	6608(5)	47.9(17)
C00W	13070(6)	2355(10)	10596(5)	47.3(17)
C00X	11445(7)	1909(10)	6357(5)	52.1(18)
C00Y	1936(6)	7368(9)	4409(5)	45.2(17)
C00z	4177(6)	5590(10)	8385(5)	47.3(17)
C010	3552(7)	6915(11)	8635(5)	56(2)
C011	3354(6)	8545(10)	8218(5)	50.0(18)

C012	11644(6)	3545(10)	6780(5)	49.6(18)
C013	1657(8)	5346(12)	4411(6)	70(2)
C014	13342(8)	338(13)	10587(6)	74(3)

Table S3 Bond Lengths for compound 4k.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl01	C00V	1.741(8)	C00F	C00G	1.510(8)
C102	COOZ	1.753(7)	C00G	C00K	1.368(8)
O003	СООН	1.250(7)	C00G	C00O	1.457(8)
O004	C00D	1.255(7)	COOI	C00L	1.343(8)
O005	C00O	1.335(7)	COOI	C00M	1.512(8)
O005	COOY	1.461(8)	COOI	COON	1.473(8)
O006	COON	1.335(7)	COOI	C00M	1.520(9)
O006	C00W	1.469(8)	C00J	COOP	1.401(9)
O007	COON	1.199(7)	C00J	COOU	1.383(9)
O008	C00O	1.203(7)	C00K	COOR	1.474(9)
N009	C00F	1.487(8)	COOL	COOS	1.484(9)
N009	С00Н	1.328(7)	COOP	C00V	1.374(10)
N00A	C00D	1.382(8)	C00Q	C00Z	1.380(10)
N00A	C00L	1.394(7)	СООТ	C011	1.422(10)
N00B	COOD	1.325(8)	COOU	C012	1.420(10)
N00B	COOM	1.480(8)	C00V	C00X	1.373(10)
N00C	С00Н	1.383(8)	C00W	C014	1.511(12)
N00C	C00K	1.388(8)	C00X	C012	1.359(10)
COOE	COOF	1.520(9)	C00Y	C013	1.515(11)
COOE	C00Q	1.377(9)	C00Z	C010	1.381(11)
COOE	СООТ	1.372(9)	C010	C011	1.351(10)

Table S4 Bond Angles for compound 4k.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C00Y	O005	C00O	116.4(5)	C00R	C00K	C00G	126.8(5)
C00W	O006	COON	116.3(5)	C00I	C00L	N00A	118.7(5)
СООН	N009	C00F	121.5(5)	COOS	C00L	N00A	114.2(5)
C00L	N00A	C00D	122.0(5)	COOS	C00L	COOI	127.1(6)
C00M	N00B	C00D	122.0(5)	C00I	C00M	N00B	108.7(5)
C00K	N00C	Соон	122.2(5)	C00J	C00M	N00B	109.7(5)
N00A	COOD	O004	120.0(5)	C00J	C00M	COOI	114.1(5)
N00B	COOD	O004	122.7(5)	O007	COON	O006	121.0(6)
N00B	COOD	N00A	117.3(5)	C00I	COON	O006	112.2(5)
C00Q	C00E	C00F	116.7(5)	C00I	COON	O007	126.8(6)
СООТ	C00E	C00F	122.1(6)	O008	C00O	O005	120.3(6)
СООТ	C00E	C00Q	121.1(6)	C00G	C00O	O005	111.9(5)
COOE	C00F	N009	109.9(5)	C00G	C00O	O008	127.8(6)
C00G	C00F	N009	108.9(5)	C00V	C00P	C00J	118.9(6)
C00G	C00F	COOE	114.8(5)	C00Z	C00Q	COOE	118.4(6)
C00K	C00G	C00F	119.2(5)	C011	СООТ	COOE	119.2(6)
C00O	C00G	C00F	119.1(5)	C012	COOU	C00J	119.5(6)
C00O	COOG	C00K	121.8(5)	C00P	C00V	C101	117.5(5)
N009	С00Н	O003	122.2(5)	C00X	C00V	C101	120.5(6)
N00C	С00Н	O003	120.1(5)	COOX	C00V	COOP	122.1(7)
N00C	С00Н	N009	117.7(5)	C014	C00W	O006	105.9(6)
C00M	COOI	C00L	119.9(5)	C012	C00X	C00V	119.7(7)
C00N	COOI	COOL	122.3(5)	C013	C00Y	O005	106.1(6)
C00N	COOI	C00M	117.9(5)	C00Q	C00Z	C102	118.6(6)
COOP	COOJ	COOM	118.0(5)	C010	C00Z	C102	119.6(6)
C00 U	C00J	C00M	122.3(6)	C010	C00Z	C00Q	121.7(7)
COOU	COOJ	COOK	119.7(6)	C011	C010	COOZ	119.8(7)
C00G	C00K	N00C	118.7(5)	C010	C011	С00Т	119.7(7)
COOR	C00K	N00C	114.5(5)	C00X	C012	C00U	120.0(7)

Single crystal X-Ray Diffraction (XRD) Analysis of 4k

Wilson plot: In order to validate the formation of synthesized 1,2,3,4-tetrahydropyrimidine-2-thione/ones and to authenticate this approach, we chose to perform the single X-ray diffraction analysis of compound **4k**. Firstly, we had carefully observed the E-STATISTICS of compound **4k**. The program E-STATISTICS carries out a Wilson plot, which calculates the normalised structure factors (E's) and the statistics of the distributions of these E-values. A graphical display of the Wilson plot is given in Figure S1. It is clearly visible from the graph that crystal structure shows perfect distributions of atoms.

Figure S1. Wilson plot of compound 4k

View Normal To (100), (010), (001): X-ray analysis revealed that the synthesized compounds are chemically as well as thermally stable. In the crystal structure, the molecules are linked by intermolecular interactions of different strengths. The compound **4k** was crystallized in triclinic cell with space group P-1. In order to check the stability of compound **4k** we had carefully observed their View Normal To (100), (010), (001) planes. These options provide views where the crystallographic bc, ac, ab planes respectively are placed in the plane of the illustration which eventually defines the stability of the compound. These sheets are connected in the (100), (010), (010), (010), (010) by the mixture of dipolar and vander wall forces for an extensively single crystal analysis as shown in Figure S2.

Figure S2. Illustration of compound 4k along (100), (010), (001) planes.

 Table S5 Calculation for green chemistry metrics for compound 4a.

S.	Parameters	Formula	Characteristics	Ideal	Calculated value
No.				Value	for compound 4a
1.	Environmental	[Total mass of	E-factor	0	[(0.06 + 0.130 +
	(E) factor	raw materials -	signifies the total		0.106)-0.208]/0.208
		the total mass of	amount of waste		= 0.42
		product]/ mass	generated in a		

		of product	chemical		
			reaction.		
2.	Process mass	\sum (mass of	PMI takes into	1	(0.06+0.130+0.106)/
	intensity	stoichiometric	account reaction		0.208 = 1.42
	(PMI)	reactants)/[mass	efficiency,		
		of stoichiometry	stoichiometry,		
		product]	amount of		
			solvent and all		
			reagent used in		
			the chemical		
			reaction.		
3.	Reaction mass	[mass of	RME accounts	100%	[0.208/ (0.06 + 0.130
	efficiency	product/2 (mass	into atom		+ 0.106)] × 100 =
	(RME %)	of stoichiometric	economy,		70%
		reactants)] \times 100	chemical yield		
			and		
			stoichiometry.		
4.	Atom	[MW of product]	Atom economy	100%	[(260.28) / (60.05 +
	economy (AE	$\div \sum (MW \text{ of }$	signifies the		130.14 + 106.12)] ×
	%)	stoichiometric	percentage of		100 = 88%
		reactants) \times 100	atoms wasted in		
			chemical		
			reaction. Higher		
			the value of AE,		
			greener is the		
			reaction.		
			Maximum value		
			of atom		
			economy is		
			100% which		
			indicates that all		
			the atoms		

			present in		
			reactants lies in		
			the product.		
5.	Carbon	[Amount of	CE signifies the	100%	= [0.8 x 14 / (1.0 x 1+
	efficiency (CE	carbon in	percentage of		1.0 x 6 + 1.0 x 7)] x
	%)	product/ Total	carbons in the		100
		carbon present in	reactants that is		= [11.2 / (1.0 + 6.0
		reactants] x 100	left in the		+ 7.0)] x 100 = 80%
			product.		

Green chemistry parameters

Further, to explore the green chemistry aspect of the reaction, Environmental (E) factor, Process mass intensity (PMI), Reaction mass efficiency (RME%), Atom economy (AE %), and Carbon efficiency (CE%) for the reaction were calculated. Figure S3 clearly demonstrates that the calculated values are closer to the ideal values indicating an environment friendly process. All the calculations for the measurement of green chemistry parameters are provided in Table S5

Figure S3. Radar chart for Green Chemistry Metrics for com-pound 4a.

FigureS4: Illustration of compound 6j along (100), (010), (110) directions.

Table S6 Crystal data and structure refinement for compound 6j

CCDC Number	CCDC 1963534
Molecular Formula	$C_{11}H_{12}N_2O_2S$

Molecular weight	236.06
Temperature	293(2)
Radiation	Mo Kα (λ = 0.71073)
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a/Å = 7.2836(4); \alpha/\circ = 75.781(5)$
	$b/Å = 12.2470(7); \beta/\circ = 74.928(5)$
	$c/Å = 13.7125(8); \Upsilon/\circ = 89.897(5)$
Volume /Å ³	1142.40(12)
Ζ	8
Density (pcalcg/cm ³)	1.377
Absorption coefficient (μ /mm ⁻¹)	0.270
F(000)	498.0
2θ range for data collection	6.55 to 58.77
Index ranges	$-9 \le h \le 10, -16 \le k \le 16, -18 \le l \le 18$
Reflections collected	17516
Independent reflections	5494 [$R_{int} = 0.0281, R_{sigma} = 0.0385$]
Data/restraints/parameters	5494/0/298
Refinement method	Full-matrix
	least-squares on F2
Goodness-of-fit on F ²	1.038
Final R indexes [I>=2 σ (I)]	R1 = 0.0531, wR2 = 0.1175
Final R indexes [all data]	R1 = 0.0766, wR2 = 0.1329
Largest diff. peak/hole / e Å ⁻³	0.19/-0.57

Table S7 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for compound **6j**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
1	1	1		1

S001	-1161.5(9)	11158.1(6)	2344.7(4)	56.68(19)
S002	6139.2(9)	7338.6(6)	7672.3(5)	61.2(2)
N003	925(2)	10126.7(13)	3468.5(11)	34.9(3)
N004	3927(2)	7135.2(14)	6532.8(12)	40.2(4)
O005	2806(2)	9002.0(16)	718.0(12)	66.0(5)
N006	-1336(2)	11189.6(15)	4311.6(12)	46.3(4)
O007	6645(3)	8098.0(16)	3764.4(13)	71.6(5)
O008	1875(3)	4400.1(15)	9189.4(13)	73.6(5)
N009	6202(3)	8662.1(18)	5778.9(15)	57.0(5)
O00A	-1601(3)	5400.6(16)	5984.8(16)	81.9(6)
C00B	-468(3)	10791.2(15)	3493.9(13)	34.4(4)
C1	3170(3)	9156.8(16)	2347.0(14)	39.0(4)
C00D	1540(3)	9864.3(16)	2508.2(14)	37.5(4)
C2	4196(3)	8904.0(17)	3083.1(15)	43.9(5)
C00F	5369(3)	7752.8(18)	6549.3(15)	41.4(5)
C00G	3350(3)	6268.1(17)	7444.1(15)	42.5(5)
Соон	1686(3)	5521.5(17)	7549.0(16)	45.5(5)
C5	3799(3)	8738.0(19)	1454.4(16)	47.1(5)
C00J	5774(3)	8271.3(19)	2967.4(16)	49.1(5)
C00K	561(3)	10349(2)	1821.5(16)	53.5(6)
C00L	766(3)	5725.2(18)	6763.2(18)	50.1(5)
COOM	940(3)	4609.5(19)	8422.7(18)	56.4(6)
C4	5367(4)	8107(2)	1349.1(18)	58.9(6)
C00O	-837(3)	5087.3(19)	6816(2)	57.8(6)
C3	6365(3)	7868(2)	2094.5(19)	58.7(6)
C00Q	4378(4)	6269(2)	8135.8(18)	59.2(6)
COOR	-1562(4)	4213(2)	7677(2)	70.3(7)
COOS	-661(4)	3979(2)	8465(2)	72.1(8)
СООТ	3557(4)	8731(3)	-250.6(18)	73.1(8)
COOU	8200(4)	7394(3)	3716(2)	77.7(8)

C00V	1073(5)	3527(2)	10113(2)	86.8(10)
C00W	-3107(5)	4686(3)	5950(3)	96.2(10)

Table S8 Anisotropic Displacement Parameters (Å2×103) for **6**j. The Anisotropicdisplacement factor exponent takes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S001	61.6(4)	77.4(4)	39.0(3)	-15.2(3)	-27.0(3)	28.0(3)
S002	60.6(4)	78.5(5)	51.4(3)	-12.8(3)	-30.3(3)	4.6(3)
N003	37.4(8)	41.6(9)	27.9(7)	-7.0(6)	-14.1(6)	5.0(7)
N004	40.0(9)	42.1(9)	38.9(9)	-8.2(7)	-13.4(7)	6.0(7)
O005	73.0(11)	92.6(13)	48.1(9)	-38.5(9)	-24.1(8)	16.3(10)
N006	48.9(10)	57.5(11)	35.4(8)	-11.8(8)	-16.2(7)	22.5(8)
O007	73.5(11)	93.4(13)	61.5(10)	-30.2(9)	-32.0(9)	49.8(10)
O008	81.4(12)	65.6(11)	53.9(10)	13.0(8)	-10.0(9)	10.9(9)
N009	55.6(12)	64.2(13)	52.2(11)	-9.7(9)	-20.9(10)	-15.1(10)
O00A	79.0(13)	71.4(12)	101.0(15)	-13.1(11)	-41.9(12)	-18.4(10)
C00B	34.6(9)	37.3(10)	30.4(9)	-3.3(7)	-11.7(7)	2.0(8)
C1	41.8(11)	40.3(11)	33.0(9)	-8.9(8)	-6.9(8)	0.7(8)
C00D	41.1(10)	41.8(10)	29.7(9)	-7.9(8)	-10.9(8)	1.1(8)
C2	47.7(12)	49.0(12)	35.9(10)	-14.9(9)	-8.8(9)	12.9(10)
C00F	37.9(10)	49.8(12)	39.9(10)	-14.6(9)	-13.3(9)	9.1(9)
C00G	45.4(11)	41.4(11)	38.5(10)	-7.8(8)	-9.7(9)	12.6(9)
С00Н	46.6(12)	36.6(11)	46.6(11)	-7.0(9)	-4.3(9)	10.4(9)
C5	52.0(12)	51.2(12)	39.5(11)	-16.8(9)	-9.7(9)	0.2(10)
C00J	51.2(13)	51.8(13)	45.3(11)	-13.9(10)	-12.9(10)	14.4(10)
C00K	61.8(14)	70.8(15)	34.4(10)	-17.8(10)	-20.2(10)	17.2(12)
C00L	52.3(13)	38.1(11)	55.3(13)	-6.2(9)	-11.5(10)	0.1(10)

C00M	61.1(15)	41.4(12)	53.4(13)	-1.2(10)	-2.7(11)	13.6(11)
C4	65.1(15)	65.1(15)	51.0(13)	-31.2(11)	-7.5(11)	9.7(12)
C00O	54.0(14)	43.1(13)	75.3(16)	-15.6(12)	-14.9(12)	2.6(11)
C3	56.6(14)	60.3(15)	61.6(14)	-26.7(12)	-9.4(11)	21.9(12)
C00Q	65.0(15)	66.2(15)	42.5(12)	-2.2(11)	-18.4(11)	9.5(12)
COOR	56.6(15)	49.3(15)	93(2)	-12.2(14)	-5.0(14)	-6.8(12)
COOS	67.8(17)	45.7(14)	76.5(18)	6.1(12)	6.1(14)	-2.7(13)
СООТ	90(2)	90(2)	44.7(13)	-32.9(13)	-12.4(13)	-9.7(16)
C00 U	72.1(18)	77.9(19)	93(2)	-24.8(16)	-36.7(16)	38.5(15)
C00V	106(2)	68.6(18)	53.5(15)	15.5(13)	5.8(15)	26.8(17)
C00W	79(2)	98(2)	120(3)	-37(2)	-34.0(19)	-22.8(18)

 Table S9 Bond Lengths for 6j.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S001	C00B	1.7336(18)	O00A	C00W	1.422(3)
S001	C00K	1.717(2)	C1	C00D	1.471(3)
S002	C00F	1.7344(19)	C 1	C2	1.382(3)
S002	C00Q	1.715(3)	C1	C5	1.410(3)
N003	C00B	1.298(2)	COOD	C00K	1.349(3)
N003	C00D	1.392(2)	C2	C00J	1.382(3)
N004	C00F	1.303(2)	C00G	С00Н	1.475(3)
N004	C00G	1.394(2)	C00G	C00Q	1.352(3)
O005	C5	1.366(3)	СООН	C00L	1.384(3)
O005	СООТ	1.418(3)	СООН	C00M	1.409(3)
N006	C00B	1.339(2)	C5	C4	1.374(3)
O007	C00J	1.374(3)	C00J	C3	1.372(3)
O007	C00 U	1.420(3)	COOL	C00O	1.383(3)

O008	C00M	1.369(3)	C00M	COOS	1.381(4)
O008	C00V	1.429(3)	C4	C3	1.377(3)
N009	C00F	1.347(3)	C00O	COOR	1.370(3)
O00A	C00O	1.367(3)	C00R	COOS	1.376(4)

 Table S 10 Bond Angles for 6j.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C00K	S001	C00B	88.80(9)	C00Q	C00G	С00Н	129.05(19)
C00Q	S002	C00F	88.60(10)	C00L	С00Н	C00G	119.18(18)
C00B	N003	C00D	111.95(15)	C00L	С00Н	C00M	117.2(2)
C00F	N004	C00G	111.10(16)	COOM	С00Н	C00G	123.6(2)
C5	O005	С00Т	118.4(2)	O005	C5	C 1	117.19(19)
C00J	O007	C00 U	117.79(19)	O005	C5	C4	122.95(19)
C00M	O008	C00V	117.9(2)	C4	C5	C 1	119.9(2)
C00O	O00A	C00W	117.6(2)	O007	C00J	C2	115.57(18)
N003	C00B	S001	114.17(14)	C3	C00J	O007	124.8(2)
N003	C00B	N006	125.19(16)	C3	C00J	C2	119.6(2)
N006	C00B	S001	120.64(14)	C00D	C00K	S001	111.65(15)
C2	C1	C00D	119.50(17)	C00O	C00L	С00Н	122.8(2)
C2	C1	C5	117.08(19)	O008	C00M	С00Н	117.0(2)
C5	C1	C00D	123.40(18)	O008	COOM	COOS	123.7(2)
N003	C00D	C1	118.15(16)	COOS	COOM	С00Н	119.4(2)
C00K	C00D	N003	113.42(18)	C5	C4	С3	121.9(2)
C00K	C00D	C1	128.38(18)	O00A	C00O	COOL	116.0(2)
C00J	C2	C1	122.56(19)	O00A	C00O	COOR	124.7(2)
N004	COOF	S002	114.77(15)	COOR	C00O	COOL	119.3(2)
N004	COOF	N009	124.07(18)	COOJ	C3	C4	119.0(2)
N009	COOF	S002	121.14(16)	C00G	C00Q	S002	111.70(17)
N004	C00G	С00Н	117.07(17)	C00O	COOR	COOS	119.2(2)
C00Q	C00G	N004	113.81(19)	COOR	COOS	C00M	122.0(2)

Atom	x	у	Z	U(eq)
H003	1409.41	9878.31	3983.44	42
H00A	-976.45	11007.32	4876.94	56
H00B	-2251.95	11627.68	4271.29	56
H00I	6011.06	8607.99	5197.19	68
H2	3809.14	9170.21	3679.33	53
H00K	791.58	10256.76	1147.93	64
HOOL	1247.32	6316.3	6174.73	60
H4	5766.32	7833.39	757.76	71
Н3	7424.27	7440.68	2007.32	70
H00Q	4156.17	5751.77	8783.4	71
HOOR	-2650.56	3782.45	7729.46	84
H00S	-1145.17	3376.68	9042.88	87
H00C	2797.45	9036.67	-717.23	110
H00D	3536.78	7925.51	-140.39	110
H00E	4845.33	9046.98	-549.63	110
H00F	9217.49	7726.76	3109.45	117
H00G	7795.54	6664.55	3674.37	117
H00H	8636.53	7313.16	4331.21	117
H00M	1078.37	2814.19	9938.36	130
H00N	-212.48	3678.52	10419.99	130
H00O	1816.18	3500.86	10602.45	130
H00P	-3446.57	4964.82	5306.19	144
НООТ	-4192.96	4676.88	6526.48	144
HOOU	-2698.04	3934.15	5992.78	144
H00J	7100(40)	9020(20)	5887(18)	60(7)

Table S 11 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for **6j.**

Table S12. Comparing excellence of $[Et_3NH][HSO_4]$ with previously reported catalysts for the synthesis of 2-aminothiazoles.

Catalyst	Solvent	Temperature	Time	Yield (%)	Ref.
Fe ₃ O ₄ nanoparticle-N-	СН ₃ ОН	65 °C	2 hrs	85	3
halo reagent palladium(II) acetate	CH ₃ CH ₂ CH ₂ OH	80 °C	4 hrs	70	4
CuI	Toluene	105 °C	12 hrs	80	5
Nanochitosan, I ₂	Ethanol	80 °C	3 hrs	80	6
Catalyst free	Water	R.T.	1-2 hrs	87	7
MW	EtOH	-	5 mins	98	8
NBS	PEG-400	R.T.	7 hrs	90	9
SiO ₂ -Cl	CH ₃ CN	80 °C	1 hr	82	10
TCCA, <i>p</i> -TSA	-	R.T.	6 hrs	90	11
[Et ₃ NH][HSO ₄]	SF [#]	40 °C	30 min	92	PW ^{\$}
^{\$} Present Work. [#] Solvent Free.					

Table S13. Comparing excellence of [Et₃NH][HSO₄] with previously reported catalysts for the synthesis of quinalinones.

Catalyst	Solvent	Temperature	Time	Yield (%)	Ref.
-	SF [#]	120°C	6 hrs	85	12
H-Y-zeolite (MW)	SF [#]	-	4 mins	85	13
Alum (MW)	SF [#]	-	5 mins	92	14
Nafion-H (MW)	SF#	-	2-6 mins	82	15
I ₂	IL	80 °C	45 mins	90	16
[Et ₃ NH][HSO ₄]	SF [#]	R.T.	15-20 min	95	PW ^{\$}
^{\$} Present Work.					
[#] Solvent Free					

Recyclability of IL [Et₃NH][HSO₄]

To investigate the potential of this procedure in a practical synthetic context and from the viewpoint of green and sustainable chemistry, the reuse of the catalytic system under study were then examined. Thus, the recyclability and the reusability of ionic liquid [Et₃NH][HSO₄] was scrutinized under optimised conditions. After the end of each reaction cycle, the product

undergoes extraction for the determination of yield by ¹HNMR. Only the reactants were added freshly for the next run. The process was able to be repeated for six times without any conspicuous influence in the reaction outcome (Figure S5).

Figure S5. Recycle studies. Conditions: urea (1 mmol), ethyl aceoacetate (1 mmol), benzaldehyde (1 mmol), IL (15 mol%). To the recycled [IL], 1 mmol of urea, 1 mmol of ethyl acetoacetate and 1 mmol of benzaldehyde were added and the next cycle was carried out under the same reaction conditions. Same procedure was followed in the synthesis of 2-aminothiazoles and quinazolinones by taking suitable reactants.

¹H NMR, ¹³C NMR and MS spectra of all compounds.

Figure S6 ¹H NMR spectra of ethyl-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4a).

Figure S7 ¹³C NMR spectra of ethyl-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4a).

FigureS8 ¹H NMR spectra of ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4b).

FigureS9 ¹³C NMR spectra of ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4b).

FigureS10 ¹H NMR spectra of ethyl-6-methyl-2-oxo-4-(p-tolyl)-1,2,3,4tetrahydropyrimidine-5-carboxylate (4c).

FigureS11 ¹³C NMR spectra of ethyl-6-methyl-2-oxo-4-(p-tolyl)-1,2,3,4tetrahydropyrimidine-5-carboxylate (4c).

FigureS12 ¹H NMR spectra of ethyl-6-methyl-2-thioxo-4-(p-tolyl)-1,2,3,4tetrahydropyrimidine-5-carboxylate (4d).

FigureS13 ¹³C NMR spectra of ethyl-6-methyl-2-thioxo-4-(p-tolyl)-1,2,3,4tetrahydropyrimidine-5-carboxylate (4d).

FigureS14 ¹H NMR spectra of ethyl-4-(4-hydroxy-3,5-ditertbutylphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (**4e**).

FigureS15 ¹³C NMR spectra of ethyl-4-(4-hydroxy-3,5-ditertbutylphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (**4e**).

FigureS16 ¹H NMR spectra of ethyl-4-(4-hydroxy-3,5-ditertbutylphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (**4f**).

FigureS17 ¹³C NMR spectra of ethyl-4-(4-hydroxy-3,5-ditertbutylphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (**4f**).

FigureS18 ¹H NMR spectra of ethyl-4-(3-fluorophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4g).

FigureS19 ¹³C NMR spectra of ethyl-4-(3-fluorophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (**4g**).

FigureS20 ¹H NMR spectra of ethyl-4-(3-fluorophenyl)-6-methyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate **(4h)**.

FigureS21 ¹³C NMR spectra of ethyl-4-(3-fluorophenyl)-6-methyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate **(4h)**.

FigureS22 ¹H NMR spectra of ethyl-4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4i).

FigureS23 ¹³C NMR spectra of ethyl-4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4i).

FigureS24 ¹H NMR spectra of ethyl-4-(4-chlorophenyl)-6-methyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4j).

FigureS25 ¹³C NMR spectra of ethyl-4-(4-chlorophenyl)-6-methyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4j).

FigureS26 ¹H NMR spectra of ethyl-4-(3-chlorophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4k).

FigureS27 ¹³C NMR spectra of ethyl-4-(3-chlorophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4k).

FigureS28 ¹H NMR spectra of ethyl-4-(2-bromophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (41).

FigureS29 ¹³C NMR spectra of ethyl-4-(2-bromophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (41).

FigureS30 ¹H NMR spectra of ethyl-4-(2-bromophenyl)-6-methyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4m).

FigureS31 ¹³C NMR spectra of ethyl-4-(2-bromophenyl)-6-methyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4m).

FigureS32 ¹H NMR spectra of ethyl-4-(4-bromophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate **(4n)**.

FigureS33 ¹³C NMR spectra of ethyl-4-(4-bromophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (**4n**).

FigureS34 ¹H NMR spectra of ethyl-4-(3-bromophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate **(40)**.

FigureS35 ¹³C NMR spectra of ethyl-4-(3-bromophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (40).

FigureS36 ¹H NMR spectra of 4-phenylthiazol-2-amine (6a).

FigureS37 ¹³C NMR spectra of 4-phenylthiazol-2-amine (6a).

FigureS38 ¹H NMR spectra of 4-methylthiazol-2-amine (6b).

FigureS39 ¹³CNMR spectra of 4-methylthiazol-2-amine (6b).

FigureS40 ¹H NMR spectra of 4-(pyridin-2-yl)thiazol-2-amine (6c).

FigureS41 ¹³C NMR spectra of 4-(pyridin-2-yl)thiazol-2-amine (6c).

FigureS42 ¹H NMR spectra of 4-(pyridin-3-yl)thiazol-2-amine (6d).

FigureS43 ¹³C NMR spectra of 4-(pyridin-3-yl)thiazol-2-amine (6d).

FigureS44 ¹H NMR spectra of 4-(4-fluorophenyl)thiazol-2-amine (6e).

FigureS45 ¹³C NMR spectra of 4-(4-fluorophenyl)thiazol-2-amine (6e).

Figure S46 ¹H NMR spectra of 4-(6-bromopyridin-2-yl)thiazol-2-amine (6f).

Figure S47 ¹³C NMR spectra of 4-(6-bromopyridin-2-yl)thiazol-2-amine (6f).

FigureS48 ¹H NMR spectra of 4-(4-bromophenyl)thiazol-2-amine (6g).

FigureS49 ¹³C NMR spectra of 4-(4-bromophenyl)thiazol-2-amine (6g).

FigureS50 ¹H NMR spectra of 4-(2,4-difluorophenyl)thiazol-2-amine (6h).

FigureS51 ¹³C NMR spectra of 4-(2,4-difluorophenyl)thiazol-2-amine (6h).

FigureS52 ¹H NMR spectra of 4-(4-chlorophenyl)thiazol-2-amine (6i).

FigureS53 ¹³C NMR spectra of 4-(4-chlorophenyl)thiazol-2-amine (6i).

FigureS54 ¹H NMR spectra of 4-(2,5-dimethoxyphenyl)thiazol-2-amine (6j).

FigureS55 ¹³C NMR spectra of 4-(2,5-dimethoxyphenyl)thiazol-2-amine (6j).

FigureS56 ¹H NMR spectra of 4-(p-tolyl)thiazol-2-amine (6k).

FigureS57 ¹³C NMR spectra of 4-(p-tolyl)thiazol-2-amine (6k).

FigureS58 ¹H NMR spectra of 4-(4-methoxyphenyl)thiazol-2-amine (6l).

FigureS59 ¹³C NMR spectra of 4-(4-methoxyphenyl)thiazol-2-amine (6l).

FigureS60 ¹H NMR spectra of 3-(4-bromophenyl)quinazolin-4(3H)-one (10a).

FigureS61 ¹³C NMR spectra of 3-(4-bromophenyl)quinazolin-4(3H)-one (10a).

FigureS62 ¹H NMR spectra of 3-(4-methoxyphenyl)quinazolin-4(3H)-one (10b).

FigureS63 ¹³C NMR spectra of 3-(4-methoxyphenyl)quinazolin-4(3H)-one (10b).

FigureS64 ¹H NMR spectra of 4-(4-oxoquinazolin-3(4H)-yl)benzonitrile (10c).

FigureS65 ¹³C NMR spectra of 4-(4-oxoquinazolin-3(4H)-yl)benzonitrile (10c).

FigureS66 ¹H NMR spectra of 3-(3-methoxyphenyl)quinazolin-4(3H)-one (10d).

FigureS67 ¹³C NMR spectra of 3-(3-methoxyphenyl)quinazolin-4(3H)-one (10d).

FigureS68 ¹H NMR spectra of 3-(2,4-dichlorophenyl)quinazolin-4(3H)-one (10e).

FigureS69 ¹³C NMR spectra of 3-(2,4-dichlorophenyl)quinazolin-4(3H)-one (10e).

FigureS70 ¹H NMR spectra of 3-(4-chloro-2-fluorophenyl)quinazolin-4(3H)-one (10f).

FigureS71 ¹³C NMR spectra of 3-(4-chloro-2-fluorophenyl)quinazolin-4(3H)-one (10f).

Figure S72 Mass spectra of Ethyl-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4a).

139.0562	2	8479.56		(M+2H)+2
277.1004	1	2585286	C14 H16 N2 O2 S	(M+H)+
278.1007	1	432282.75	C14 H16 N2 O2 S	(M+H)+
279.0991	1	143728.7	C14 H16 N2 O2 S	(M+H)+
280.1014	1	31714.89	C14 H16 N2 O2 S	(M+H)+
281.1062	1	10327.09	C14 H16 N2 O2 S	(M+H)+
299.0799	1	34689.36		(M+Na)+
575.1792	1	8514.2		(2M+Na)+
576.1921	1	3674.48		(2M+Na)+

--- End Of Report ---

Figure S73 Mass spectra of Ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (**4b**).

--- End Of Report ---

Figure S74 Mass spectra of

tetrahydropyrimidine-5-carboxylate (4d).

Ethyl-6-methyl-2-thioxo-4-(p-tolyl)-1,2,3,4-

Figure S75 Mass spectra of Ethyl-4-(4-hydroxy-3,5-ditertbutylphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4e).

Figure S76 Mass spectra of Ethyl-4-(4-hydroxy-3,5-ditertbutylphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (**4f**).

Figure S77 Mass spectra of Ethyl-4-(3-fluorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4h).

Figure S78 Mass spectra of Ethyl-4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4i).

Figure S79 Mass spectra of Ethyl-4-(4-chlorophenyl)-6-methyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4j).

--- End Of Report ---

Figure S80 Mass spectra of Ethyl-4-(3-chlorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4k).

---- End Of Report ----

Figure S81 Mass spectra of Ethyl-4-(2-bromophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (41).

Figure S82 Mass spectra of Ethyl-4-(2-bromophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4m).

--- End Of Report ---

Figure S83 Mass spectra of Ethyl-4-(4-bromophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (**4n**).

Compound Table

					MFG Diff	
Compound Label	RT	Mass	Formula	MFG Formula	(ppm)	DB Formula
Cpd 11: C14 H15 Br N2 O3	0.1	338.0264	C14 H15 Br N2 O3	C14 H15 Br N2 O3	0.51	C14 H15 Br N2 O3

Compound Label	m/z	RT	Algorithm	Mass
Cpd 11: C14 H15 Br N2 O3	339.0339	0.1	Find by Molecular Feature	338.0264

MFE MS Spectrum

x10 5	Cpd 11: C14 H15 Br N2 O3: +ESI MFE Spectrum (0.036-0.553 min) Frag=175.0V IL-8.d
4	* 339)0339 ([C14 H15 Br N2 O3]+H)+
3	
2	
1.	
0 -	
	150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 Counts vs. Mass-to-Charge (m/z)

MFE MS Zoomed Spectrum

m/z z		Abund	Formula	Ion
339.0339	1	489856.47	C14 H15 Br N2 O3	(M+H)+
340.0368	1	66210.09	C14 H15 Br N2 O3	(M+H)+_
341.0316	1	469245.31	C14 H15 Br N2 O3	(M+H)+
342.0342	1	68016.78	C14 H15 Br N2 O3	(M+H)+
343.0395	1	8901.21	C14 H15 Br N2 O3	(M+H)+
344.0404	1	735.74	C14 H15 Br N2 O3	(M+H)+
345 0556	1	2376.24	C14 H15 Br N2 O3	(M+H)+

--- End Of Report ---

Figure S84 Mass spectra of Ethyl-4-(3-bromophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (40).

End Of Report

Figure S85 Mass spectra of 4-Phenylthiazol-2-amine (6a).

Figure S86 Mass spectra of 4-Methylthiazol-2-amine (6b).

Figure S87 Mass spectra of 4-(Pyridin-2-yl)thiazol-2-amine (6c).

Figure S88 Mass spectra of 4-(pyridin-3-yl)thiazol-2-amine (6d).

Figure S89 Mass spectra of 4-(4-Fluorophenyl)thiazol-2-amine (6e).

Figure S90 Mass spectra of 4-(3-Bromopyridin-2-yl)thiazol-2-amine (6f).

Figure S91 Mass spectra of 4-(4-Bromophenyl)thiazol-2-amine (6g).

Figure S92 Mass spectra of 4-(2,4-Difluorophenyl)thiazol-2-amine (6h).

Figure S93 Mass spectra of 4-(4-chlorophenyl)thiazol-2-amine (6i).

⁻ End Of Report -

Figure S94 Mass spectra of 4-(2,5-Dimethoxyphenyl)thiazol-2-amine (6j).

Qualitative Compound Report

Figure S96 Mass spectra of 4-(4-methoxyphenyl)thiazol-2-amine (6l)

References

1. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. J. Appl. *Cryst.* **2009**,*42*, 339-341.

2. Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. *Acta Cryst. A* **2015**, *71*, 59-75.

3. Sadeghi,M.; Safari,J.; Zarnegar,Z. Synthesis of 2-aminothiazoles from methylcarbonyl compounds using a Fe3O4 nanoparticle-N-halo reagent catalytic system. *RSC Adv.* **2016**, *6*, 64749.

4. Chen,B.; Guo,S.; Guo,X.; Zhang,G.; Yu,Y. Selective Access to 4-Substituted 2-Aminothiazoles and 4-Substituted 5-Thiocyano-2-aminothiazoles from Vinyl Azides and Potassium Thiocyanate Switched by Palladium and Iron Catalysts. *Org. Lett.* **2015**, *17*, 4698–4701.

5. Tang,X.; Zhu,Z.; Qi,C.; Wu,W.; Jiang,H. Copper-Catalyzed Coupling of Oxime Acetates with Isothiocyanates: A Strategy for 2-Aminothiazoles. *Org. Lett.* **2016**, *18*, 180–183.

6. Safari, J.; Abedi-Jazini, Z.; Zarnegar, Z.; Sadeghi, M. Nanochitosan: A biopolymer catalytic system for the synthesis of 2-aminothiazoles. *Catalysis Communications* **2016**, 77, 108–112.

7. Potewar, T.M.; Ingale, S.A.; Srinivasan, K.V. Catalyst-free efficient synthesis of 2aminothiazoles in water at ambient temperature. *Tetrahedron* **2008**, 64, 5019–5022.

8. Kabalka, G.W.; Mereddy, A.R. Microwave promoted synthesis of functionalized 2-aminothiazoles. *Tetrahedron Letters* **2006**, 47, 5171–5172.

9. Jawale, D.V.; Lingampalle, D.L.; Pratap, U.R.; Mane, R.A. One-pot synthesis of 2-aminothiazoles in PEG-400. *Chinese Chemical Letters* **2010**, 21, 412–416.

10. Karade, H.; Sathe, M.; Kaushik, M.P. An efficient method for the synthesis of 2aminothiazoles using silica chloride as a heterogeneous catalyst. *Catalysis Communications* **2007**, 8, 741–746.

11. Nagarajaiah, H.; Mishra, A. K.; Moorthy, J. N. Mechanochemical solid-state synthesis of 2-aminothiazoles, quinoxalines and benzoylbenzofurans from ketones by one-pot sequential acid- and base-mediated reactions. *Org. Biomol. Chem.*, **2016**, *14*, 4129

12. Kumar, D.; Jadhavar, P.S.; Nautiyal, M.; Sharma, H.; Meena, P.K.; Adane, L.; Pancholia,S.; Chakraborti, A.K. Convenient synthesis of 2,3-disubstituted quinazolin-4(3H)-

ones and 2-styryl-3-substituted quinazolin-4(3H)-ones: applications towards the synthesis of drugs. *RSC Adv.* **2015**, 5, 30819.

13. Bakavoli, M.; Sabzevari, O.; Rahimizadeh, M. H-Y-zeolites induced heterocyclization: Highly efficient synthesis of substituted-quinazolin-4(3H)ones under microwave irradiation. *Chinese Chemical Letters* **2007**, 18, 533–535.

14. Mohammadi, Ali, A; Sadat Hossini, S. S. KAl(SO4)2•12H2O (Alum) Catalyzed One-Pot Three-Component Synthesis of 2-Alkyl and 2-Aryl-4(3H)-quinazolinone under Microwave Irradiation and Solvent Free Conditions. *Chin. J. Chem.* **2011**, 29, 1982—1984.

15. Ezikiel, G.; Yakaiah, T.; Venkat Reddy, G.; Shanthan Rao, P. Nafion-H: An Efficient and Recyclable Heterogeneous Catalyst for the One-Pot Synthesis of 2,3-Disubstituted 4-(3H)-Quinazolinones under SolventFree Microwave Irradiation Conditions. *Synlett* **2006**, *15*, 2507–2509.

16. Wang, S.L.; Yang, K.; Yao, C.S.; Wang, X.S. Green Synthesis of Quinazolinone Derivatives Catalyzed by Iodine in Ionic Liquid. *Synthetic Communications* **2012**, 42:3, 341-349.