Electronic Supplementary Information (ESI)

Partial sulfidation for constructing Cu₂O-CuS heterostructures realizing enhanced electrochemical glucose sensing

Sai Zhang, ‡ Xiaoming Mou, ‡ Zhao Cui, Changmin Hou, Wenlong Yang, * Hongtao Gao, and Xiliang Luo*

S. Zhang, X. M. Mou, Z. Cui, C. M. Hou, Dr. W. L. Yang, Prof. H. T. Gao, Prof. X. L. Luo

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE,

Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong,

College of Chemistry and Molecular Engineering,

Qingdao University of Science and Technology,

Qingdao, Shandong, 266042, P. R. China

E-mail: wlyang@qust.edu.cn; xiliangluo@qust.edu.cn

Fig. S1 XRD patterns of Cu₂O cubes and different Cu₂O-CuS hybrid structures.

Fig. S2 SEM images of different Cu₂O-CuS hybrid structures.

Cu₂O-CuS-1, Cu₂O-CuS-2, Cu₂O-CuS-3, and Cu₂O-CuS-4 were prepared with 20 mg, 30 mg, 40 mg, and 50 mg thioacetamide (TAA), respectively.

Fig. S3 CV curves of pure Cu_2O cubes and various Cu_2O -CuS hybrid structures measured in 0.1 M NaOH solution with different concentrations of glucose at a scan rate of 50 mV s⁻¹.

Electrode	Linear range (mM)	Detection limit (µM)	Sensitivity (µA∙mM ⁻¹ ∙cm ⁻²)	Reference
Cu ₂ O-CuS-2	0.01-1	0.46	1876	This work
Cu ₂ O/Cu	0.05-6.75	37	62.29	Int. J. Electrochem. Sci. 2012, 7, 12587–12600.
Cu ₂ O MSs/S- MWCNTs	0.005-7	1.46	581.89	ACS Appl. Nano Mater. 2020, 3, 4788–4798.
Cu ₂ O/ graphene	0.3-3.3	3.3	285	Biosens. Bioelectron. 2013, 45, 206–212.
spiky Cu/CuO NW array	0.01-7	10	1210	ACS Omega 2019, 4, 12222–12229.
rGO-Pt NW	0.032-1.89	4.6	56.11	Int. J. Electrochem. Sci. 2018, 13, 4817–4826.
Co ₃ N NW/TM	0.0001-2.5	0.05	3325.6	Sens. Actuators, B 2018, 255, 1254–1261.
W ₁₈ O ₄₉	0.06-1.6	0.02	167	ACS Biomater. Sci. Eng. 2020, 6, 1909–1919.
NiO/TiO ₂	0.005-12.1	1.0	252.0	Sci. Total Environ. 2015, 502,70–79.

Table S1 Comparison of the electrochemical performance for glucose sensing between the Cu₂O-CuS

 2 hybrid electrode and other transition-metal-based electrodes recently reported.

Species	Energy (eV)	Formation energy (eV)
Cu ₂ O Cu ₂ O-OH	-61431.0703 -61456.2941	5.824285
CuS-Cu ₂ O CuS-Cu ₂ O-OH	-77222.8434 -77250.8253	3.066185
OH*	-31.048085	

 Table S2 DFT data for the formation energies of electroactive Cu(III) species.

Table S3 DFT data for the adsorption energies of glucose on the surface of catalysts.

Species	Energy (eV)	Adsorption energy (eV)	
Cu ₂ O	-581493.4961	-4.6189	
$Cu_2O-C_6H_{12}O_6$	-601175.6299		
CuS-Cu ₂ O	-582448.3601	-7.9101	
$CuS-Cu_2O-C_6H_{12}O_6$	-602133.7851		
$C_6H_{12}O_6$	-19677.5149		