Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

supplementary

2D g- C_3N_4 as Bifunctional Photocatalyst for Co-catalyst and Sacrificial Agent-Free Photocatalytic N_2 Fixation and Dye

Photodegradation

Mohammed Abdullah Bajiri¹, Abdo Hezam², R. Viswanath¹, H. S. Bhojya Naik^{*,1} Nabil Al-Zaqri³, Ali Alsalme³, Fahad A. Alharthi³, Raghd Alasmari³

¹Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences,

Kuvempu University, Shankaraghatta-577 451, India.

²Center for Materials Science and Technology, University of Mysore, VijanaBhavana,

Manasagangothiri, Mysuru 570 006, India

³Department of Chemistry, College of Science, King Saud University, P.O. Box 2455,

Riyadh, 11451, Saudi Arabia.

*Corresponding Author: <u>hsb_naik@rediffmail.com</u>

Catalysts	Cocatalyst	Light source	Sacrificial	The rate of the NH ₃ production	Ref
g-C ₃ N ₄	Sulfur- doped	Xenon lamp (500-W)	Methanol	5.99 mM h ⁻¹ gcat ⁻¹	[S1]
g-C ₃ N ₄	HCl	Sodium lamp (250 W, 400–800 nm)	Ethanol	6.32 mg L ⁻¹ h ⁻¹ gcat ⁻¹	[S2]
g-C ₃ N ₄	rGO	Sodium lamp (250 W, 400–800 nm)	EDTA- 2Na	9.276 mg L ⁻¹ h ⁻¹ gcat ⁻¹	[83]
g-C ₃ N ₄	КОН	Xe lamp (300 W)	Methanol	3.632 mmol h ⁻¹ g ⁻¹	[S4]
g-C ₃ N ₄ / Fe ₂ O ₃	Non	Xenon lamp (300 W)	Ethanol	47.9 mg/L/h	[85]
g-C ₃ N ₄ / ZnMo/CdS	Non	Sodium lamp (250 W, 400–800 nm)	Ethanol	1.47 mg L ⁻¹ h ⁻¹ gcat ⁻¹	[S6]
V-g-C ₃ N ₄ / Ag ₂ CO ₃	Non	Sodium lamp (250 W, 400–800 nm) with NaNO ₂ solution filter	Ethanol or Methanol	4.5 mg·L ⁻¹ h ⁻¹ gcat ⁻¹	[S7]
g-C ₃ N ₄	Non	Sodium lamp(200W,400- 800nm)	Ethanol	3.01 mg L ⁻¹ h ⁻¹ gcat ⁻¹	[S8]
V-g-C ₃ N ₄	Non	Xe lamp with UV cutoff filter (300 W, $\lambda > 420$ nm)	Methanol	1.24 mmol/h per 1g of V- g-C ₃ N ₄	[S9]
r-GO @PMo ₁₀ V ₂	Non	Xenon lamp (300 W)	Non	130.3 μmol L ⁻¹ h ⁻¹	[S10]
2D g-C ₃ N ₄	Non	Sunlight	Non	3.9 mg/L/h	Current work

Table S1: Comparison of NH_3 production rate on 2D g-C₃N₄ with reported relevant catalysts.

* Nitrogen vacancies (V)

Fig. S1. Second order kinetic rate of bulk $g-C_3N_4$ and 2D $g-C_3N_4$ of MB.

Table S2. Kinetic k constant and R^2 for first order reaction for MB and MG, and second order reaction for MB.

Sample	First-order kinetic rate (k1) constant (min ⁻¹)	R ²	Second order kinetic rate (k2) constant L/mg/min	R ²
MB				
$2D g-C_3N_4$	0.43463	0.88833	0.11179	0.68702
bulk g-C ₃ N ₄	0.31967	0.93027	0.0623	0.81244
MG				
$2D g-C_3N_4$	0.5133	0.8808		
bulk g-C ₃ N ₄	0.38103	0.92414		

References

[S1] S. Cao, B. Fan, Y. Feng, H. Chen, F. Jiang, X. Wang, Sulfur-doped $g-C_3N_4$ nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation, Chem. Eng. J., 353 (2018) 147-156.

[S2] H. Ma, Z. Shi, Q. Li, S. Li, Preparation of graphitic carbon nitride with large specific surface area and outstanding N₂ photofixation ability via a dissolve-regrowth process, J. Phys. Chem. Solids., 99 (2016) 51-58.

[S3] S. Hu, W. Zhang, J. Bai, G. Lu, L. Zhang, G. Wu, Construction of a 2D/2D g- C_3N_4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process, RSC advances., 6 (2016) 25695-25702.

[S4] X. Li, X. Sun, L. Zhang, S. Sun, W. Wang, Efficient photocatalytic fixation of N₂ by KOH-treated g-C₃N₄, J. Mater. Chem. A., 6 (2018) 3005-3011.

[S5] S. Liu, S. Wang, Y. Jiang, Z. Zhao, G. Jiang, Z. Sun, Synthesis of Fe₂O₃ loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia, Chem. Eng. J., 373 (2019) 572-579.

[S6] Q. Zhang, S. Hu, Z. Fan, D. Liu, Y. Zhao, H. Ma, F. Li, Preparation of g-C₃N₄/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment, Dalton Trans., 45 (2016) 3497-3505.

[S7] G. Wu, L. Yu, Y. Liu, J. Zhao, Z. Han, G. Geng, One step synthesis of N vacancy-doped $g-C_3N_4/Ag_2CO_3$ heterojunction catalyst with outstanding "two-path" photocatalytic N₂ fixation ability via in-situ self-sacrificial method, Appl. Surf. Sci., 481 (2019) 649-660.

[S8] H. Ma, Z. Shi, S. Li, N. Liu, Large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability via a convenient microwave treatment, Appl. Surf. Sci., 379 (2016) 309-315.

[S9] G. Dong, W. Ho, C. Wang, Selective photocatalytic N_2 fixation dependent on $g-C_3N_4$ induced by nitrogen vacancies, J. Mater. Chem. A., 3 (2015) 23435-23441.

[S10] X.-H. Li, W.-L. Chen, H.-Q. Tan, F.-R. Li, J.-P. Li, Y.-G. Li, E.-B. Wang, Reduced State of the Graphene Oxide@ Polyoxometalate Nanocatalyst Achieving High-Efficiency Nitrogen Fixation under Light Driving Conditions, ACS Appl. Mater. Interfaces., 11 (2019) 37927-37938.