Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

## Radiation synthesis of imidazolium-based ionic liquids modified silica adsorbents

for ReO<sub>4</sub><sup>-</sup> adsorption Kangjun Xie<sup>a, b</sup>, Zhen Dong<sup>a</sup>, Nan Wang<sup>a, b</sup>, Wei Qi<sup>a, b</sup>, Long

Zhao<sup>a, 1</sup>

<sup>a</sup> State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

<sup>b</sup> School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China



Fig. S1. SEM and elemental mapping images of Si-IL-NO<sub>3</sub>.

<sup>&</sup>lt;sup>1</sup> Corresponding authors:

E-mail addresses: ryuuchou@hotmail.com, zhaolong@hust.edu.cn (Long Zhao)



Fig. S2. SEM and elemental mapping images of Si-IL-Cl.



Fig. S3. SEM and elemental mapping images of Si-IL-NTf2.



Fig. S4. Fitted adsorption kinetic curves of Si-IL-BF4 (a), Si-IL-NO3 (b), Si-IL-Cl (c), and Si-IL-NTf2 (d).



Fig. S5. Fitted adsorption isotherm curves of Si-IL-BF<sub>4</sub> (a), Si-IL-NO<sub>3</sub> (b), Si-IL-Cl (c), and Si-IL-NTf<sub>2</sub> (d).



Fig. S6. The effect of pH (a) and initial ReO4<sup>-</sup> concentration (b) on the adsorption capacity of Si-IL-SO4.



Fig. S7. FT-IR spectra of Si-IL-BF<sub>4</sub> (a), Si-IL-NO<sub>3</sub> (b), and Si-IL-NTf<sub>2</sub> (c) before and after adsorption. XPS spectra of Si-IL-BF<sub>4</sub>

(d), Si-IL-NO<sub>3</sub> (e), and Si-IL-NTf<sub>2</sub> (f) before and after adsorption.

Table S1. The composition of the simulated Hanford wastewater.

| Anion                         | Concentration (mol L-1) | Molar ratio (anions to ReO <sub>4</sub> -) |
|-------------------------------|-------------------------|--------------------------------------------|
| ReO <sub>4</sub> -            | $1.94 \times 10^{-4}$   | 1.0                                        |
| NO <sub>3</sub> -             | $6.07 	imes 10^{-2}$    | 314                                        |
| Cl-                           | $6.39 \times 10^{-2}$   | 330                                        |
| NO <sub>2</sub> -             | $1.69 \times 10^{-1}$   | 873                                        |
| $SO_4^{2-}$                   | $6.64 \times 10^{-5}$   | 0.34                                       |
| CO <sub>3</sub> <sup>2-</sup> | $4.30 	imes 10^{-4}$    | 2.22                                       |

Table S2. The composition of the simulated radioactive wastewater.

| Composition        | Concentration (mmol L <sup>-1</sup> ) |
|--------------------|---------------------------------------|
| ReO <sub>4</sub> - | 0.1                                   |
| $UO_2^{2+}$        | 0.1                                   |
| Ce <sup>3+</sup>   | 0.1                                   |

| Eu <sup>3+</sup>   | 0.1 |
|--------------------|-----|
| Nd <sup>3-</sup>   | 0.1 |
| $\mathrm{Sr}^{2+}$ | 0.1 |
| La <sup>3+</sup>   | 0.1 |
| $\mathrm{Sc}^{3+}$ | 0.1 |
| HNO <sub>3</sub>   | 500 |