Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information (ESI) for New Journal of Chemistry

Electronic Supplementary Information

Cellulose nanocrystalline and sodium benzenesulfonate-doped

polypyrrole nano-hydrogel/Au composites for ultrasensitive detection of

carcinoembryonic antigen

Xiangrong Huang¹, Zhuoyao Ni¹, Haiping Su¹, Yazhuo Shang^{*1}, Honglai Liu¹, Yifan He², Hong Meng², Yinmao Dong²

1 Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

2 Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China

Fig. S1 CNC-PPy gel (a) and BSNa-CNC-PPy gel (b) in centrifuge tubes.

Fig. S2 FTIR spectra of CNC, PPy and CNC-PPy.

Fig. S3 Thermal gravimertic analysis of BSNa-CNC-PPy gel.

Fig. S4 Zeta potential of different samples.

Fig. S5 Comparison of current response variation of GCE modified by different materials.

Fig. S6 Effect of the reaction time (a); temperature (b); pH (c); concentration of py (d); concentration of (NH₄)₂S₂O₈ (e); C_{CNC} (f) and sulphonate dopants (g) on the SWV responses for CNC-PPy modified immunosensor. (a) pH = 0.85, C_{CNC} = 2 mg/mL, T = 4 °C, Cpy = 1 M, C<sub>(NH₄):S₂O₈ = 0.25 M; (b) pH = 0.85, C_{CNC} = 3 mg/mL, t = 25 min, Cpy = 1 M, C<sub>(NH₄):S₂O₈ = 0.28 M; (c) C_{CNC} = 3 mg/mL, T = 4 °C, t = 25 min, Cpy = 1 M, C<sub>(NH₄):S₂O₈ = 0.28 M; (c) C_{CNC} = 3 mg/mL, T = 4 °C, t = 25 min, Cpy = 1 M, C<sub>(NH₄):S₂O₈ = 0.28 M; (d) pH = 0.85, C_{CNC} = 3 mg/mL, T = 4 °C, t = 25 min, Cpy = 1 M; (f) pH = 5.5, C_{CNC} = 3 mg/mL, T = 4 °C, t = 25 min, Cpy = 1 M, C<sub>(NH₄):S₂O₈ = 0.28 M.
</sub></sub></sub></sub></sub>

Fig. S7 Effects of amounts of BSA (a), blocking time of BSA (b) and amounts of anti-CEA on the current responses of the developed immunosensor.

Fig. S8 Effects of the incubation pH (a), incubation time (b) and incubation temperature (c) on the SWV responses of the immunosensor for 50 ng·mL⁻¹ CEA.

materials	CNC-PPy gel	BSNa-CNC-PPy gel	Ref
BET (m^2/g)	68.17	76.59	26.2 ^[1] 17.6 ^[2] 25.2 ^[3]
ECSA (mm ²)	13.77/7.06 (bare)	15.15/7.06 (bare)	21.41/12.56 = 1.7 ^[4]
	= 1.95	= 2.14	
SWV response (µA)	-256.4	-272.5	
Conductivity (S/cm)	1.62	1.74	0.46 [1]
Reproducibility	bad	good	

Table. S1 Comparison of CNC-PPy gel and BSNa-CNC-PPy gel

Table. S2 Comparison of linear range and detection limit of some modified electrodes materials

Sensors	Linear range	Detection limit (ng/mL)	Ref
	(ng/mL)		
PPy hydrogel/Au	1.0×10 ⁻⁶ - 200	1.6×10^{-7}	[1]
GNP-THi-GR	1×10 ⁻² - 0.5	4×10^{-3}	[5]
AuNPs/(PB-rGO-MWCNTs)n	2×10 ⁻¹ - 40	6×10^{-2}	[6]
AuNPs/PB-PEDOT	5×10 ⁻² - 40	1×10^{-2}	[7]
AuNPs/CNOs/SWCTs/chitosan	1×10 ⁻⁴ - 400	1×10^{-4}	[8]
polyCBMA/PANI composite	1×10 ⁻⁵ - 0.1	3.05×10^{-6}	[9]
BSNa-CNC-PPy hydrogel/Au	1.0×10 ⁻⁶ - 200	$0.6 imes10^{-7}$	This work

References

- Rong, Q., Han, H., Feng, F., Ma, Z. Network nanostructured polypyrrole hydrogel/Au composites as enhanced electrochemical biosensing platform. Sci. Rep. 2015, 5, 11440-11440.
- [2] Wang, H., Han, H., Ma, Z. Conductive hydrogel composed of 1,3,5benzenetricarboxylic acid and Fe³⁺ used as enhanced electrochemical immunosensing substrate for tumor biomarker. Bioelectrochemistry. 2017, 114, 48-53.
- [3] Wang, H., Ma, Z. Ultrasensitive amperometric detection of the tumor biomarker cytokeratin antigen using a hydrogel composite consisting of phytic acid, Pb(II) ions and gold nanoparticles. Microchim. Acta. 2017, 184, 1045-1050.

- [4] Zhao, L., Ma, Z. Facile synthesis of polyaniline-polythionine redox hydrogel: Conductive, antifouling and enzyme-linked material for ultrasensitive label-free amperometric immunosensor toward carcinoma antigen-125. Anal. Chim. Acta. 2018, 997, 60-66.
- [5] Kong, F., Xu, M., Xu, J., Chen, H. A novel label-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles-thionine-reduced graphene oxide nanocomposite film modified glassy carbon electrode. Talanta. 2011, 85, 2620-2625.
- [6] Feng, D., Lu, X., Dong, X., Ling, Y., Zhang, Y. Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian Blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles. Microchim. Acta. 2013, 180, 767-774.
- [7] Yang, T., Gao, Y., Liu, Z., Xu, J., Lu, L., Yu, Y. Three-dimensional gold nanoparticles/prussian blue-poly(3,4-ethylenedioxythiophene) nanocomposite as novel redox matrix for label-free electrochemical immunoassay of carcinoembryonic antigen. Sens Actuators B Chem. 2017, 239, 76-84.
- [8] Rizwan, M., Elma, S., Lim, S.A., Ahmed, M.U. AuNPs/CNOs/SWCNTs/chitosannanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosens. Bioelectron. 2018, 107, 211-217.
- [9] Wang, J., Hui, N. Zwitterionic poly(carboxybetaine) functionalized conducting polymer polyaniline nanowires for the electrochemical detection of carcinoembryonic antigen in undiluted blood serum. Bioelectrochemistry. 2019, 125, 90-96.