Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

## pH Response of a Hydroxyl-FunctionalizedLuminescent Metal-Organic

## **Framework based Phosphor**

Sayani Hui,<sup>a</sup> Prakash Majee,<sup>b</sup> Debal Kanti Singha,<sup>a</sup> PoojaDaga,<sup>b</sup> Sudip Kumar Mondal<sup>b\*</sup>an

d Partha Mahata<sup>a\*</sup>

<sup>a</sup>Department of Chemistry, Jadavpur University, Kolkata-700032, India. Email: parthachem@gmail.com

<sup>b</sup>Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India. Email: <u>sudip.mondal@visva-bharati.ac.in</u>

# **ELECTRONIC SUPPLEMENTARY INFORMATION**

<sup>\*</sup> Corresponding Authors, E-mail: <u>parthachem@gmail.com</u>, <u>sudip.mondal@visva-bharati.ac.in</u>

#### Discussion on the B level alerts on Single crystal X-ray data obtained from checkCIF

#### Group 1

PLAT306\_ALERT\_2\_B Isolated Oxygen Atom (H-atoms Missing ?) ...... O100 Check

PLAT306\_ALERT\_2\_B Isolated Oxygen Atom (H-atoms Missing ?) ...... O200 Check

#### **Explanation:**

Hydrogen atoms of the solvate/lattice water molecules were not located but are included in the formula. The location of hydrogen atoms were not possible in disordered oxygen atoms [O100 and O200] of water molecules.

#### Group 2

PLAT430\_ALERT\_2\_B Short Inter D...A Contact O18 ..O100......2.81 Ang.

PLAT430\_ALERT\_2\_B Short Inter D...A Contact O19 ..O200 . .....2.77 Ang.

#### **Explanation:**

The presence of disordered oxygen atoms of lattice water molecules [O100 and O200] and coordinated water molecules [O18 and O19] is responsible for the observed short distances.

### Group 3

PLAT934 ALERT 3 B Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers

PLAT939\_ALERT\_3\_B Large Value of Not (SHELXL) Weight Optimized S

#### **Explanation:**

This is due to weak quality of the data and refinement statistics if compared to that expected for small molecule structures from highly diffracting crystals. The ALERT reports the S value based on the supplied sigma(I) only. A large value of S generally indicates the presence of large outliers in the data set.

| Bond        | Distances, Å | Bond         | Distances, Å |
|-------------|--------------|--------------|--------------|
| Y(1)-O(1)   | 2.380(2)     | Y(2)-O(3)#2  | 2.381(2)     |
| Y(1)-O(4)#1 | 2.343(2)     | Y(2)-O(6)    | 2.402(2)     |
| Y(1)-O(7)   | 2.369(2)     | Y(2)-O(8)    | 2.397(2)     |
| Y(1)-O(11)  | 2.336(3)     | Y(2)-O(12)#3 | 2.437(2)     |
| Y(1)-O(16)  | 2.373(3)     | Y(2)-O(13)#3 | 2.420(3)     |
| Y(1)-O(17)  | 2.405(3)     | Y(2)-N(1)#2  | 2.460(3)     |
| Y(1)-O(18)  | 2.382(3)     | Y(2)-N(2)    | 2.478(3)     |
| Y(1)-O(19)  | 2.376(2)     | Y(2)-N(3)#3  | 2.467(3)     |
| Y(2)-O(2)#2 | 2.368(2)     |              |              |

Table S1: Selected bond distances (Å) observed in  $[Y_2(CAM)_3(H_2O)_4].2H_2O$ , 1a

| Angle               | Amplitude (°) | Angle               | Amplitude (°) |
|---------------------|---------------|---------------------|---------------|
| O(11)-Y(1)-O(4)#1   | 117.15(9)     | O(19)-Y(1)-O(1)     | 80.46(9)      |
| O(11)-Y(1)-O(7)     | 78.00(9)      | O(11)-Y(1)-O(18)    | 76.72(9)      |
| O(4)#1-Y(1)-O(7)    | 139.73(9)     | O(4)#1-Y(1)-O(18)   | 142.11(9)     |
| O(11)-Y(1)-O(16)    | 144.09(9)     | O(7)-Y(1)-O(18)     | 75.45(9)      |
| O(4)#1-Y(1)-O(16)   | 77.78(8)      | O(16)-Y(1)-O(18)    | 112.52(10)    |
| O(7)-Y(1)-O(16)     | 71.62(9)      | O(19)-Y(1)-O(18)    | 82.45(10)     |
| O(11)-Y(1)-O(19)    | 71.35(9)      | O(1)-Y(1)-O(18)     | 72.08(9)      |
| O(4)#1-Y(1)-O(19)   | 70.86(9)      | O(11)-Y(1)-O(17)    | 73.12(9)      |
| O(7)-Y(1)-O(19)     | 145.54(9)     | O(4)#1-Y(1)-O(17)   | 72.18(9)      |
| O(16)-Y(1)-O(19)    | 142.34(8)     | O(7)-Y(1)-O(17)     | 78.19(9)      |
| O(11)-Y(1)-O(1)     | 140.16(9)     | O(16)-Y(1)-O(17)    | 82.19(10)     |
| O(4)#1-Y(1)-O(1)    | 77.24(9)      | O(19)-Y(1)-O(17)    | 106.72(10)    |
| O(7)-Y(1)-O(1)      | 116.20(9)     | O(1)-Y(1)-O(17)     | 143.75(9)     |
| O(16)-Y(1)-O(1)     | 72.60(9)      | O(18)-Y(1)-O(17)    | 143.28(9)     |
| O(2)#2-Y(2)-O(3)#2  | 129.30(8)     | O(2)#2-Y(2)-O(8)    | 147.07(9)     |
| O(3)#2-Y(2)-O(8)    | 76.49(9)      | O(2)#2-Y(2)-O(6)    | 79.90(9)      |
| O(3)#2-Y(2)-O(6)    | 84.85(9)      | O(8)-Y(2)-O(6)      | 127.69(8)     |
| O(2)#2-Y(2)-O(13)#3 | 79.41(9)      | O(3)#2-Y(2)-O(13)#3 | 144.10(9)     |
| O(8)-Y(2)-O(13)#3   | 87.92(9)      | O(6)-Y(2)-O(13)#3   | 79.47(9)      |
| O(2)#2-Y(2)-O(12)#3 | 83.79(9)      | O(3)#2-Y(2)-O(12)#3 | 81.01(9)      |
|                     |               |                     |               |

Table S2: Selected bond angles observed in  $[Y_2(CAM)_3(H_2O)_4].2H_2O$ , 1a

| O(8)-Y(2)-O(12)#3    | 80.68(9)  | O(6)-Y(2)-O(12)#3   | 143.95(9) |
|----------------------|-----------|---------------------|-----------|
| O(13)#3-Y(2)-O(12)#3 | 128.61(8) | O(2)#2-Y(2)-N(1)#2  | 64.37(8)  |
| O(3)#2-Y(2)-N(1)#2   | 64.97(8)  | O(8)-Y(2)-N(1)#2    | 134.05(9) |
| O(6)-Y(2)-N(1)#2     | 74.14(9)  | O(13)#3-Y(2)-N(1)#2 | 138.02(9) |
| O(12)#3-Y(2)-N(1)#2  | 69.82(9)  | O(2)#2-Y(2)-N(3)#3  | 77.85(9)  |
| O(3)#2-Y(2)-N(3)#3   | 134.06(9) | O(8)-Y(2)-N(3)#3    | 69.27(9)  |
| O(6)-Y(2)-N(3)#3     | 140.63(9) | O(13)#3-Y(2)-N(3)#3 | 64.81(9)  |
| O(12)#3-Y(2)-N(3)#3  | 64.28(9)  | N(1)#2-Y(2)-N(3)#3  | 122.55(9) |
| O(2)#2-Y(2)-N(2)     | 136.32(9) | O(3)#2-Y(2)-N(2)    | 73.16(9)  |
| O(8)-Y(2)-N(2)       | 63.93(8)  | O(6)-Y(2)-N(2)      | 63.96(8)  |
| O(13)#3-Y(2)-N(2)    | 70.94(9)  | O(12)#3-Y(2)-N(2)   | 139.87(9) |
| N(1)#2-Y(2)-N(2)     | 122.28(9) | N(3)#3-Y(2)-N(2)    | 115.03(9) |



Fig. S1: Figure show (a) distorted square anti-prism geometry observed in Y(1) and (b) distorted tricapped trigonal prism geometry observed in Y(2) in  $[Y_2(CAM)_3(H_2O)_4].2H_2O$ , **1a**.



Fig. S2: Figure show the connectivities with the  $Y^{3+}$  ions- (a) CAM(1), (b) CAM(2), (c) CAM(3) in [Y<sub>2</sub>(CAM)<sub>3</sub>(H<sub>2</sub>O)<sub>4</sub>].2H<sub>2</sub>O, **1a**.



Fig. S3: Powder XRD (CuK $\alpha$ ) patterns: (a) simulated from single crystal X-ray data of [Y<sub>2</sub>(CAM)<sub>3</sub>(H<sub>2</sub>O)<sub>4</sub>].2H<sub>2</sub>O, **1a**, (b) hydrothermally synthesized [Y<sub>2</sub>(CAM)<sub>3</sub>(H<sub>2</sub>O)<sub>4</sub>].2H<sub>2</sub>O, **1a**, and (c) hydrothermally synthesized [Y<sub>1.8</sub>Tb<sub>0.2</sub>(CAM)<sub>3</sub>(H<sub>2</sub>O)<sub>4</sub>].2H<sub>2</sub>O, **1**.



Fig. S4: Thermogravimetric analysis (TGA) of compound **1** in nitrogen atmosphere.



Fig. S5:  $N_2$  sorption plot of compound 1.



Fig. S6: Representative EDX plot of compound 1. Note the presence of Tb and Y are in molar ratio of ~ 1:9.



Fig. S7: Figure shows luminescence spectra of aqueous solution of compound **1** at pH 6, pH 2 and pH 11 upon excitation at 280 nm.



Fig.S8: Absorption spectra of compound 1 at different pH (5-9).



Fig.S9: Powder XRD (CuK $\alpha$ ) patterns: (a) hydrothermally synthesized [Y<sub>1.8</sub>Tb<sub>0.2</sub>(CAM)<sub>3</sub>(H<sub>2</sub>O)<sub>4</sub>].2H<sub>2</sub>O, **1**, (b) pH= 4, (c) pH= 5, (d) pH=6, (e) pH=7, (f) pH= 8 and (g) pH= 9.



Fig. S10: Figure shows luminescence spectra of compound **1** in phosphate buffer solution at different pH values upon excitation at 280 nm.



Fig. S11: Changes in luminescence intensity of **1** at different pH values in phosphate buffer, obtained by monitoring the luminescence intensity at  $\lambda_{em} = 545$  nm.