Copper(II) Complexes of 2-methyl-8-hydroxyquinoline and tri/diimine Co-ligand: DFT Calculation, DNA and BSA Binding, DNA Cleavage, Cytotoxicity and Induction of Apoptosis
 Somasundaram Sangeetha ${ }^{1,2}$. Tamilarasan Ajaykamal ${ }^{3} \cdot$ Mariappan Murali ${ }^{*}$

Mariappan Murali
ma66mu@gmail.com
1 Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli 620 001, Tamil Nadu, India
2 Department of Chemistry, Tamilavel Umamaheswaranar Karanthai Arts College, Thanjavur 613 002, Tamil Nadu, India
3 School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India

Fig. S1 Computed frontier molecular orbitals of complexes $[\mathrm{Cu}(\text { terpy })(\mathrm{mq})]^{1+} \mathbf{1}$ and $[\mathrm{Cu}(\mathrm{phen})(\mathrm{mq})]^{1+} \boldsymbol{2}$ calculated at the B3LYP 6-31G/ LANL2DZ levels.

Fig. S2 Circular dichroism spectra of CT DNA in 2\% DMF/5mM Tris-HCl/ 50 mM NaCl buffer at pH 7.1 and $25^{\circ} \mathrm{C}$ in absence (a) and presence of $\mathbf{1}$ (b) and $\mathbf{2}$ (c) at $1 / \mathrm{R}$ value of 3 .

Fig. S3 Cyclic voltammograms of $\mathbf{1}$ (left, A) and $\mathbf{2}$ (right, B) $(0.5 \mathrm{mM})$ in the absence (a) and presence (b) of CT DNA $(\mathrm{R}=5)$ at $25.0 \pm 0.2^{\circ} \mathrm{C}$ at $50 \mathrm{mV} \mathrm{s}^{-1}$ scan rate in $2 \% \mathrm{DMF} / 5 \mathrm{mM}$ Tris$\mathrm{HCl} / 50 \mathrm{mM} \mathrm{NaCl}$ buffer at pH 7.1 .

Fig. S4 The Stern-Volmer plots of BSA at different temperatures for addition of $\mathbf{1}$ and $\mathbf{2} . \lambda_{\mathrm{ex}}=$ $280 \mathrm{~nm} ; \mathrm{pH}=7.4$.

Fig. S5 The modified Stern-Volmer plots of BSA at different temperatures for addition of $\mathbf{1}$ and 2. $\lambda_{\mathrm{ex}}=280 \mathrm{~nm} ; \mathrm{pH}=7.4$.

Fig. S6 UV-Vis absorption spectra of BSA in the absence and presence of $\mathbf{1}$ (left, A) and $\mathbf{2}$ (right, B). (a) Absorption spectrum of BSA. (b) Absorption spectrum of BSA in the presence of $\mathbf{1}$ and $\mathbf{2}$ at the same concentration, $[\mathrm{BSA}]=[\mathrm{Cu}$ complex $]=3.5 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$.

Fig. S7 Double-log plot of quenching effect of $\mathbf{1}$ and $\mathbf{2}$ on BSA fluorescence at $\mathrm{pH}=7.4$.

Fig. S8 Agarose gel showing cleavage of $20 \mu \mathrm{M} \mathrm{SC} \phi \mathrm{X} 174$ RF DNA incubated with $\mathbf{1}$ in 0.1 M phosphate buffer (pH 7.2) at $37{ }^{\circ} \mathrm{C}$ for 1 h . Lane 1, DNA; Lanes 2-7, DNA $+\mathbf{1}$ (10,20,40,60,80,100 $\mu \mathrm{M}$ respectively). Form I and II are supercoiled and nicked circular forms of DNA respectively.

Fig. S9. Giemsa staining of MCF7 breast cancer cells untreated with $\mathbf{1}$ and $\mathbf{2}$ (A), treated with $\mathbf{1}$ and 2 at $24(\mathbf{B}$ and $\mathbf{D})$ and $48 \mathrm{~h}(\mathbf{C}$ and $\mathbf{E})$ of incubation.

Fig. S10 AO/EB staining of MCF7 breast cancer cells untreated with $\mathbf{1}$ (A), treated with $\mathbf{1}$ at 24 $(\mathbf{B}, \mathbf{C}, \mathbf{D})$ and $48 \mathrm{~h}(\mathbf{E}, \mathbf{F}, \mathbf{G})$ of incubation (arrow head indicate chromatin fragmentation, chromatin condensation and late apoptosis indication of apoptotic bodies)

Fig. S11 Phase contrast of MCF7 breast cancer cells untreated with $\mathbf{1}$ and $\mathbf{2}$ (A), treated with $\mathbf{1}$ and 2 at 24 h of incubation (B and $\mathbf{D})$ and 48 h of incubation (\mathbf{C} and \mathbf{E}).

Table S1. Selected crystal data and structure refinement parameters for $\mathbf{1}$

Formula	$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{ClO}_{5} \mathrm{Cu}$
Formula weight	554.53
Temperature (K)	$293(2)$
Wavelength (\AA)	0.71069
Crystal system	Triclinic
Space group	$P-1$
$a(\AA)$	$7.3527(8)$
$b(\AA)$	$12.8535(14)$
$c(\AA)$	$13.2223(15)$
$\alpha\left({ }^{\circ}\right)$	75
$\beta\left({ }^{\circ}\right)$	$79.635(2)$
$\gamma\left({ }^{\circ}\right)$	87
$V(\AA)^{3}, \mathrm{Z}$	$1188.3(2), 2$
$D_{\text {calc }}(\mathrm{g}$ cm-3 $)$	1.550
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	1.077
$F(000)$	566
Crystal size (mm)	$0.18 \times 0.10 \times 0.09$
$\theta\left({ }^{\circ}\right)$	$1.62-29.01$
Index ranges	$-10 \leq \mathrm{h} \leq 10$,
	$-17 \leq \mathrm{k} \leq 17$,
	$-18 \leq 1 \leq 17$
Reflections collected	17029
Independent reflections	6274
Reflections observed $[\mathrm{I}>2 \sigma(\mathrm{I})]$	4623
$R_{\text {int }}$	0.0251
GOF	1.006
$R_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0341
$\mathrm{w} R_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0890
$R_{1}, \mathrm{w} R_{2}$ all data	$0.0481 / 0.0939$

Table S2. Electrochemical data ${ }^{\text {a }}$ for the copper(II) complexes at $25.0 \pm 0.2^{\circ} \mathrm{C}$

Complexes	R	$\mathrm{Epcc}^{\text {c }}$ (V)	$\mathrm{E}_{\mathrm{pa}}(\mathrm{V})$	$\mathrm{E}_{1 / 2}(\mathrm{~V})$		$\begin{gathered} \Delta \mathrm{E}_{\mathrm{p}} \\ (\mathrm{mV}) \end{gathered}$	$\mathrm{i}_{\mathrm{pa}} / \mathrm{i}_{\mathrm{pc}}$	$\begin{aligned} & \mathrm{D}\left(10^{-6}\right. \\ & \left.\mathrm{cm}^{2} \mathrm{~s}^{1}\right) \end{aligned}$	$\mathrm{K}_{+} / \mathrm{K}_{2+}$
				CV	DPV ${ }^{\text {b }}$				
1	0	-0.895	-0.674	-0.784	-0.805	221	0.52	6.59	
	5	-0.953	-0.623	-0.788	-0.799	330	0.54	6.02	1.30
2	0	-0.504	-0.312	-0.408	-0.413	192	0.62	7.62	
	5	-0.501	-0.295	-0.398	-0.390	206	0.57	7.45	2.30

${ }^{2}$ Measured vs. SCE electrode; scan rate: $50 \mathrm{mV} \mathrm{s}^{-1}$, supporting electrolyte $2 \% \mathrm{DMF} / 5 \mathrm{mM}$ Tris$\mathrm{HCl} / 50 \mathrm{mM} \mathrm{NaCl}$; complex concentration: $2.5 \times 10^{-4} \mathrm{M}$.
${ }^{\mathrm{b}}$ Differential pulse voltammetry (DPV), scan rate: $2 \mathrm{mV} \mathrm{s}^{-1}$, pulse height 50 mV .

Calculations of BSA binding parameters

Fluorescence quenching property can be described by the Stern-Volmer equation [1]:

$$
\mathrm{F}_{0} / \mathrm{F}=1+\mathrm{K}_{\mathrm{SV}}[\mathrm{Q}]=1+\mathrm{k}_{\mathrm{q}} \tau_{0}[\mathrm{Q}]
$$

where F_{0} and F are the steady-state fluorescence intensities in the absence and the presence of quencher, respectively. K_{SV} is the Stern-Volmer quenching constant and $[\mathrm{Q}]$ is the concentration of quencher. The plot of $\mathrm{F}_{0} / \mathrm{F}$ versus $[\mathrm{Q}]$ shows the value of K_{sv}. According to the above equation

$$
\mathrm{K}_{\mathrm{SV}}=\mathrm{k}_{\mathrm{q}} / \tau_{0}
$$

where K_{q} is the quenching rate constant and τ_{0} is the fluorescence lifetime of protein in the absence of quencher, the value of τ_{0} is considered to be $10^{-8} \mathrm{~s}[2]$.

The binding constant $\left(\mathrm{K}_{\mathrm{b}}\right)$ and the numbers of binding sites (n) can be determined using the following equation [3]:

$$
\log \left[\mathrm{F}_{0}-\mathrm{F} / \mathrm{F}\right]=\log \mathrm{K}_{\mathrm{b}}+\mathrm{n} \log [\mathrm{Q}]
$$

where K_{b} is the binding constant, reflecting the degree of interaction of the BSA and complex, and n is the number of binding sites. The plots of $\log \left[\left(\mathrm{F}_{0}-\mathrm{F}\right) / \mathrm{F}\right]$ versus $\log [\mathrm{Q}]$ gives a straight line. The values of n and K_{b} can be calculated from the slope and intercept of the linear plot respectively.
The thermodynamic parameters can be calculated from the following Van't Hoff equations [4, 5] to elucidate the binding forces between complex and BSA.

$$
\begin{gathered}
\ln \left(\mathrm{K}_{2} / \mathrm{K}_{1}\right)=\left(1 / \mathrm{T}_{1}-1 / \mathrm{T}_{2}\right) \Delta \mathrm{H}^{\circ} / \mathrm{R} \\
\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ}=-\mathrm{R} \ln \mathrm{~K}
\end{gathered}
$$

where K_{1} and K_{2} are equilibrium binding constants at temperature T_{1} and T_{2}, respectively, and R is the gas constant.

References

1. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd ed. (New York: Springer Science+Business Media).
2. Lakowicz JR, Webber G (1973) Biochemistry 12:4161-4170.
3. Divsalar A, Bagheri MJ, Saboury AA, Mansoori-Torshizi H, Amani M (2009) J. Phys. Chem. B 113:14035-14042.
4. Wang T, Zhao Z, Wei B, Zhang L, Ji L (2010) J. Mol. Struct. 970:128-133.
5. Bi S, Sun Y, Qiao C, Zhang H, Liu C (2009) J. Lumin. 129:541-547.
