Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Copper(II) Complexes of 2-methyl-8-hydroxyquinoline and tri/diimine Co-ligand: DFT Calculation, DNA and BSA Binding, DNA Cleavage, Cytotoxicity and Induction of Apoptosis

Somasundaram Sangeetha^{1,2} · Tamilarasan Ajaykamal³ · Mariappan Murali^{1*}

Mariappan Murali ma66mu@gmail.com

- 1 Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli 620 001, Tamil Nadu, India
- 2 Department of Chemistry, Tamilavel Umamaheswaranar Karanthai Arts College, Thanjavur 613 002, Tamil Nadu, India
- 3 School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India

Fig. S1 Computed frontier molecular orbitals of complexes $[Cu(terpy)(mq)]^{1+1}$ and $[Cu(phen)(mq)]^{1+2}$ calculated at the B3LYP 6-31G/ LANL2DZ levels.

Fig. S2 Circular dichroism spectra of CT DNA in 2% DMF/5mM Tris-HCl/50 mM NaCl buffer at pH 7.1 and 25 °C in absence (a) and presence of **1** (b) and **2** (c) at 1/R value of 3.

Fig. S3 Cyclic voltammograms of **1** (left, **A**) and **2** (right, **B**) (0.5 mM) in the absence (a) and presence (b) of CT DNA (R = 5) at 25.0 ± 0.2 °C at 50 mV s⁻¹ scan rate in 2% DMF/5mM Tris-HCl/50 mM NaCl buffer at pH 7.1.

Fig. S4 The Stern-Volmer plots of BSA at different temperatures for addition of 1 and 2. $\lambda_{ex} = 280 \text{ nm}$; pH = 7.4.

Fig. S5 The modified Stern-Volmer plots of BSA at different temperatures for addition of 1 and 2. $\lambda_{ex} = 280$ nm; pH = 7.4.

Fig. S6 UV-Vis absorption spectra of BSA in the absence and presence of 1 (left, A) and 2 (right, B). (a) Absorption spectrum of BSA. (b) Absorption spectrum of BSA in the presence of 1 and 2 at the same concentration, $[BSA] = [Cu \text{ complex}] = 3.5 \times 10^{-6} \text{ mol } \text{L}^{-1}$.

Fig. S7 Double-log plot of quenching effect of 1 and 2 on BSA fluorescence at pH = 7.4.

Fig. S8 Agarose gel showing cleavage of 20 μ M SC ϕ X174 RF DNA incubated with **1** in 0.1 M phosphate buffer (pH 7.2) at 37 °C for 1 h. Lane 1, DNA; Lanes 2-7, DNA + **1** (10,20,40,60,80,100 μ M respectively). Form I and II are supercoiled and nicked circular forms of DNA respectively.

Fig. S9. Giemsa staining of MCF7 breast cancer cells untreated with 1 and 2 (A), treated with 1 and 2 at 24 (B and D) and 48 h (C and E) of incubation.

Fig. S10 AO/EB staining of MCF7 breast cancer cells untreated with 1 (A), treated with 1 at 24 (B, C, D) and 48 h (E, F, G) of incubation (arrow head indicate chromatin fragmentation, chromatin condensation and late apoptosis indication of apoptotic bodies)

Fig. S11 Phase contrast of MCF7 breast cancer cells untreated with 1 and 2 (A), treated with 1 and 2 at 24 h of incubation (B and D) and 48 h of incubation (C and E).

Formula	$C_{2}H_{10}N_{4}ClO_{5}Cu$
Formula weight	554 53
Temperature (K)	293(2)
Wavelength (\dot{A})	0.71069
Crystal system	Triclinic
Space group	P_{-1}
$a(\dot{\lambda})$	7 - 1 7 3527(8)
$h(\Lambda)$	128535(14)
$\mathcal{O}(\mathbf{A})$	12.0333(14) 13.2223(15)
$\mathcal{C}(\mathbf{A})$	15.2225(15) 75
a()	75
$\beta(c)$	/9.635(2)
$\gamma(0)$	87
$V(\mathbf{A})^3, \mathbf{Z}$	1188.3(2), 2
D_{cale} (g cm ⁻³)	1.550
μ (mm ⁻¹)	1.077
F(000)	566
Crystal size (mm)	0.18 x 0.10 x 0.09
$ heta(^{\circ})$	1.62-29.01
Index ranges	-10≤h≤10,
	-17≤k≤17,
	-18≤l≤17
Reflections collected	17029
Independent reflections	6274
Reflections observed $[I > 2\sigma(I)]$	4623
R_{int}	0.0251
GOF	1.006
$R_1 [I > 2\sigma(I)]$	0 0341
$WR_{2} [I > 2\sigma(I)]$	0.0890
$R_1 = WR_2$ all data	0.0481/0.0939
N ₁ , w _{N₂} all uata	0.0701/0.0/3/

Table S1. Selected crystal data and structure refinement parameters for 1

Complexes	R	$E_{pc}(V)$	E _{pa} (V)	E _{1/2} (V)		ΔE_p (mV)	i_{pa}/i_{pc}	$D (10^{-6} cm^2 s^1)$	K_{+} / K_{2+}
				CV	DPV ^b				
1	0	-0.895	-0.674	-0.784	-0.805	221	0.52	6.59	
	5	-0.953	-0.623	-0.788	-0.799	330	0.54	6.02	1.30
2	0	-0.504	-0.312	-0.408	-0.413	192	0.62	7.62	
	5	-0.501	-0.295	-0.398	-0.390	206	0.57	7.45	2.30

Table S2. Electrochemical data^a for the copper(II) complexes at 25.0 ± 0.2 °C

^aMeasured vs. SCE electrode; scan rate: 50 mV s⁻¹, supporting electrolyte 2% DMF/5mM Tris-HCl/50mM NaCl; complex concentration: 2.5×10^{-4} M. ^bDifferential pulse voltammetry (DPV), scan rate: 2 mV s⁻¹, pulse height 50 mV.

Calculations of BSA binding parameters

Fluorescence quenching property can be described by the Stern-Volmer equation [1]:

$$F_0/F = 1 + K_{SV}[Q] = 1 + k_q \tau_0[Q]$$

where F_0 and F are the steady-state fluorescence intensities in the absence and the presence of quencher, respectively. K_{SV} is the Stern-Volmer quenching constant and [Q] is the concentration of quencher. The plot of F_0/F versus [Q] shows the value of K_{SV} . According to the above equation

$$K_{\rm SV} = k_q / \tau_0$$

where K_q is the quenching rate constant and τ_0 is the fluorescence lifetime of protein in the absence of quencher, the value of τ_0 is considered to be 10⁻⁸ s [2].

The binding constant (K_b) and the numbers of binding sites (n) can be determined using the following equation [3]:

$$\log[F_0-F/F] = \log K_b + n\log[Q]$$

where K_b is the binding constant, reflecting the degree of interaction of the BSA and complex, and n is the number of binding sites. The plots of $log[(F_0-F)/F]$ versus log[Q] gives a straight line. The values of n and K_b can be calculated from the slope and intercept of the linear plot respectively.

The thermodynamic parameters can be calculated from the following Van't Hoff equations [4, 5] to elucidate the binding forces between complex and BSA.

$$\ln(K_2/K_1) = (1/T_1 - 1/T_2) \Delta H^{\circ}/R$$
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -RT \ln K$$

where K_1 and K_2 are equilibrium binding constants at temperature T_1 and T_2 , respectively, and R is the gas constant.

References

- 1. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd ed. (New York: Springer Science+Business Media).
- 2. Lakowicz JR, Webber G (1973) Biochemistry 12:4161-4170.
- Divsalar A, Bagheri MJ, Saboury AA, Mansoori-Torshizi H, Amani M (2009) J. Phys. Chem. B 113:14035-14042.
- 4. Wang T, Zhao Z, Wei B, Zhang L, Ji L (2010) J. Mol. Struct. 970:128-133.
- 5. Bi S, Sun Y, Qiao C, Zhang H, Liu C (2009) J. Lumin. 129:541-547.