Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary information

Complexes of divalent europium with dotp and dotpph

Przemysław Starynowicz

Table S1. Na-O distances (Å) in eudotp .				
Na1—O11 ⁱ	2.317 (3)	Na4—O31 ^{vii}	2.379 (3)		
Na1—O21 ⁱ	2.399 (3)	Na4—O32	2.286 (3)		
Na1—O23	2.335 (3)	Na4—O43 ^{vii}	2.309 (3)		
Na1—OW1 ⁱ	2.545 (3)	Na4—OW13 ^{vii}	2.341 (3)		
Na1—OW8 ⁱ	2.371 (3)	Na5—O21	2.405 (3)		
Na1—OW3	2.562 (3)	Na5—O23 ⁱ	2.419 (3)		
Na2—OW9 ⁱⁱ	2.351 (3)	Na5—O32	2.673 (3)		
Na2—OW4	2.359 (3)	Na5—OW1	2.418 (3)		
Na2—OW5	2.410 (3)	Na5—OW8 ⁱ	2.303 (3)		
Na2—OW4 ⁱⁱⁱ	2.421 (3)	Na5—OW13 ^{vii}	2.318 (3)		
Na2—OW6 ^{iv}	2.477 (3)	Na6—O11	2.483 (3)		
Na2—OW11	2.579 (3)	Na6—O41	2.288 (3)		
Na3—OW7 ^v	2.376 (3)	Na6—OW1	2.702 (3)		
Na3—OW14	2.393 (3)	Na6—OW2 ^{viii}	2.399 (3)		
Na3—OW17 ^{vi}	2.394 (4)	Na6—OW3 ⁱ	2.495 (3)		
Na3—OW3 ^{iv}	2.470 (3)	Na6—OW14 ^{vii}	2.612 (3)		
Na3—OW10	2.496 (3)				
Na3—OW2 ^v	2.500 (3)				
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$; (ii) $x-1$, $y+1$, z ; (iii) $-x-1$, $-y+1$, $-z+1$; (iv) $x-1$, y , z ; (v) x , $y-1$, z ; (vi) $-x+1$, $-y$, $-z$; (vii) $-x$, $-y$, $-z+1$; (viii) $-x$, $-y+1$, $-z+1$. Table S2. Eu1-N,O distances (Å). Eu1-O21 2.39 (3) Eu1-O11 2.425 (10) Eu1-N2 2.65 (2) Eu1-N1 2.671 (15) Eu1-O31 2.695 (18) Eu1-O41 2.89 (3) Eu1-N3 2.982 (19) Eu1-N4 3.07 (2)					

H-bond	D-H (Å)	HA (Å)	DA (Å)	\angle (DHA) (°)
OW1-H1W1-033 ⁱ	0.86	2.25	3.086(4)	162
OW1-H2W1-031	0.86	1.82	2.664(5)	168
OW2-H1W2-042	0.86	2.10	2.930(5)	163
OW2013			2.739(4)	
OW3-H1W3-OW5 ⁱⁱ	0.86	1.88	2.733(5)	172
OW3-H1W3-022	0.86	1.96	2.808(4)	167
OW4-H1W4-O12 ⁱⁱⁱ	0.86	1,94	2.794(5)	171
OW4-H2W4-O43	0.86	1.84	2.691(4)	170
OW5-H1W5-042	0.86	1.89	2.744(4)	171
OW5-H2W5-013 ^{iv}	0.86	1.88	2.741(4)	179
OW6-H1W6-O43 ^{iv}	0.75	2.07	2.809(4)	166
OW6-H2W6-013iv	0.78	1.99	2.773(5)	175
OW7-H1W7-042	0.86	1.92	2.754(4)	163
OW7-H2W7-OW19	0.86	1.94	2.756(6)	157
OW8-H1W8-012	0.86	2.02	2.871(4)	170
OW8-H2W8 OW9 ^v	0.86	2.08	2.889(5)	156
OW9-H1W8-032	0.86	1.85	2.707(3)	173
OW9-H2W9-022	0.86	1.88	2.732(5)	177
OW10-H1W0-023vi	0.86	2.39	2.941(4)	123
OW10-033			2.812(7)	
OW11-H1WA-OW15vii	0.86	2.08	2.895(6)	158
OW11-H2WA O42	0.86	2.05	2.893(4)	167
OW12-H1WB-OW11viii	0.86	1.89	2.736(7)	167
OW12-H2WB-O12v	0.86	1.98	2.837(4)	170
OW13O33			2.694(4)	
OW14-H1WD-033	0.86	1.96	2.778(5)	159
OW14-H2WD-OW6 ^{ix}	0.86	1.93	2.787(4)	174
OW15-H1WE-022	0.86	1.82	2.680(5)	176
OW15-H2WE-OW7 ⁱⁱ	0.86	1.92	2.757(5)	164
OW16-H1WF-OW12 ^x	0.86	2.01	2.777(4)	149
OW17-H1WG-016	0.86	1.97	2.782(6)	160
OW17OW20			2.859(7)	
OW17OW20			2.710(15)	
OW18-H1WH O12	0.86	1.96	2.800(4)	164
OW18-H2WH-OW13viii	0.86	1.95	2.763(5)	158
OW19OW18x			2.828(8)	
OW19 OW21 ^x			2.492(15)	
OW20OW10viii			2.999(10)	
OW20OW15			2.908(9)	
OW21OW10viii			2.632(12)	
OW21OW20xi			2.613(13)	

Table S3. Hydrogen bonds in **eudotp** (please note that OW20 and OW21 atoms are disordered).

Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y-1, z; (iii) x-1, y, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y, - z+1; (vi) x-1, y, z; (vii) x-1, y+1, z; (viii) x+1, y, z; (ix) x, y-1, z; (x) -x+1, -y+1, -z; (xi) -x+2, -y, - z.

Table S4. Hydrogen bonds and C-H^{\dots} π contacts in **eudotpph**.

H-bond $D-H(Å) H-A(Å) D-A(Å) \angle(DHA)(^{\circ})$

OW1-H1W1-032	0.82	1.94	2.755(4)	172
OW1-H2W1-042	0.77	2.02	2.785(4)	170
OW2-H1W2-022	0.85	1.92	2.764(4)	171
OW2-H2W2-012	0.97	1.78	2.743(4)	173
N51-H51A-042 ⁱ	0.86	2.07	2.833(4)	147
N51-H51B-OW2 ⁱⁱ	0.86	2.08	2.866(4)	151
N52-H52A-021	0.86	2.10	2.925(4)	159
N52-H52BOW2 ⁱⁱ	0.86	2.21	2.958(4)	146
N53-H53A-031	0.86	1.95	2.796(4)	169
N53-H53B O42 ⁱ	0.86	2.19	2.930(4)	143
N61-H61A-OW1 ⁱ	0.86	1.98	2.804(4)	161
N61-H61BO22 ⁱⁱ	0.86	2.19	2.932(4)	144
N62-H62BO22 ⁱⁱ	0.86	2.13	2.897(4)	147
N63-H63A-011	0.86	2.13	2.925(4)	153
C43-H43-X1 ^{iii*}	0.93	2.68	3.61	175
C23-H23-X3 ^{iv**}	0.93	2.58	3.50	171

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2; (iii) -x+1, -y, -z+1; (iv) x+1, -y, -z.

* X1 – geometric centre of the ring formed by C11 through C16 atoms; ** X3 – geometric centre of the ring formed by C31 through C36 atoms.

Fig. S1. Packing diagram of **eudotp**. The H atoms and Na-O bonds have been removed for clarity. The Na cations are yellow and the hydrogen bonds are shown with blue dashed lines.

Fig. S2. Packing diagram of **eudotpph**. The Eu1 atoms have been removed for clarity; the hydrogen bonds are blue dashed.

Table S5. Results of the fitting of the polarographic curves. The current was fitted according the following relation:

$$i = \frac{i_{d(1)}}{\left(1 + \exp\left[\frac{n\alpha F}{0.9163RT}(E - E_{1/2}^{(1)}]\right]\right)} + i_0\left(+\frac{i_{d(2)}}{\left(1 + \exp\left[\frac{n\alpha F}{0.9163RT}(E - E_{1/2}^{(2)}]\right]\right)}\right),$$

where $i_{d(m)}$ and $E_{1/2}^{(m)}$ are the diffusion current and the half-wave potential of the *m*-th wave, i_0 is the initial residual current and other symbols are conventional or explained in the main text.

complex	pН	$E_{1/2}$	nα
eudotp	7.15	-1.394(1)	0.608(11)
	8.47	-1.413(1)	0.555(14)
	10.08	-1.411(1)	0.498(37)
	11.83	-1.410(1)	0.504(10)
eudotpph	6.63	-1.196 ^{*)}	0.395(9)
		-1.388(3)	0.337(11)
	10.80	-1.196(3)	0.434(14)
		-1.418(3)	0.463((16)

*) This parameter was taken from the fit for pH=10.80 and fixed

Relations between the Eu-O and Eu-N distances in **eudotp** and **eudotph** (taken jointly) and bond degrees and delocalization indices:

Fig. S3. Bond degree of the Eu-O bonds as a function of the Eu-O distance. The red line represents the least-squares fitted linear function.

Fig. S4. Bond degree of the Eu-N bonds as a function of the Eu-N distance. The blue line represents the least-squares fitted linear function.

Fig. S5. Delocalization index of the Eu-O bonds as a function of the Eu-O distance. The red line represents the least-squares fitted linear function.

Fig. S6. Delocalization index of the Eu-N bonds as a function of the Eu-N distance. The blue line represents the least-squares fitted linear function.

Fig. S7. Delocalization index of all the Eu-O and Eu-N bonds as a function of the Eu-ligand distance. The green line represents the least-squares fitted linear function.

Table S6. Bader charges (Q_B) for Eu, coordinated atoms and those constituting the phosphonate or
phosphinate groups. The phenyl groups are given their sum charges; each such group is attached
to the P atom listed above the respective group.

eudotp		eudotpph	
atom	$Q_{\rm B}$	atom	$Q_{\rm B}$
Eu	1.66	Eu	1.66
P1	3.40	P1	3.08
011	-1.55	011	-1.50
012	-1.49	012	-1.50
013	-1.47	phen	-0.50
P2	3.42	P2	3.09
021	-1.55	021	-1.51
022	-1.49	022	-1.50
023	-1.53	phen	-0.50
Р3	3.39	Р3	3.11
031	-1.52	031	-1.50
032	-1.52	032	-1.50
033	-1.50	phen	-0.51
P4	3.41	P4	3.12
041	-1.54	041	-1.51
042	-1.49	042	-1.51
043	-1.49	phen	-0.48
N1	-0.90	N1	-0.89
N2	-0.90	N2	-0.90
N3	-0.89	N3	-0.89
N4	-0.90	N4	-0.89

atom		lsp1			lsp2			lsp2	
	hybridization	admixture	composition	hybridization	admixture	composition	hybridization	admixture	composition
				eu	dotp				
	0.66			sp	in α		1		
011	sp ^{0.66}	1.91	sd ^{2.06}	p	0.57	d	p	0.75	d
021	sp ^{0.65}	1.86	sd ^{2.38}	p	0.46	d	р	0.64	d
031	sp ^{0.84}	1.54	sd ^{2.85}	p	0.48	d	р	0.64	sd ^{5.68}
041	sp ^{0.63}	1.88	sd ^{2.51}	p	0.55	d	р	0.69	d
N1	sp ^{4.10}	2.07	sd ^{4.30}						
N2	sp ^{4.01}	1.95	sd ^{3.50}						
N3	sp ^{4.13}	1.83	sd ^{4.65}						
N4	sp ^{4.14}	2.14	sd ^{3.59}						
				sp	in β				
011	sp ^{0.66}	2.19	$sd^{2.17}f^{0.86}$	р	0.77	$df^{0.62}$	р	0.92	$df^{0.51}$
O21	sp ^{0.66}	2.15	$sd^{2.21}f^{0.73}$	p	0.60	df ^{0.58}	р	0.79	df ⁰³⁸
031	sp ^{0.83}	1.81	sd ^{2.79} f ^{0.92}	р	0.61	df ⁰⁷²	sp ^{9.52}	0.83	sd ^{5.89} f ^{3.07}
O41	sp ^{0.64}	2.17	sd ^{2.34} f ^{0.73}	р	0.67	df ^{0.64}	р	0.92	df ^{0.46}
N1	sp ^{4.06}	2.33	sd ^{3.64} f ^{1.39}						
N2	sp ^{4.00}	2.18	sd ^{3.16} f ^{1.20}						
N3	sp ^{4.09}	2.19	sd ^{3.83} f ^{1.70}						
N4	sp ^{4.11}	2.33	sd ^{3.25} f ^{1.19}						
	· •			eud	otpph				
				sp	in α				
011	sp ^{0.60}	1.35	sd ^{2.40}	р	0.52	d	р	0.58	d
021	sp ^{0.62}	1.28	sd ^{2.54}	р	0.51	d	р	0.52	d
031	sp ^{0.59}	1.51	sd ^{2.66}	p	0.45	d	p	0.53	d
O41	sp ^{0.58}	1.57	sd ^{3.00}	p	0.60	d	p	0.58	d
N1	sp ^{3.94}	1.49	sd ^{4.42}	•			•		
N2	sp ^{4.04}	1.56	sd ^{4.03}						
N3	sp ^{3.91}	1.53	sd ^{3.97}						
N4	sp ^{4.03}	1.66	sd ^{3.71}						
spin ß									
011	sp ^{0.59}	1.56	sd ^{2.44} f ^{0.88}	b b	0.62	df ^{0.43}	p	0.68	df ^{0.42}
021	sp ^{0.63}	1.48	sd ^{2.46} f ^{0.99}	p p	0.62	df ^{0.45}	p P	0.60	df ^{0.41}
031	sp ^{0.59}	1.67	sd ^{2.66} f ^{0.62}	n n	0.51	df ^{0.42}	n p	0.61	df ^{0.32}
041	sp ^{0.58}	1.74	sd ^{2.94} f ^{0.74}	<u>г</u> р	0.66	df ^{0.42}	p p	0.69	df ^{0.38}
N1	sp ^{3.92}	1.63	sd ^{3.81} f ^{1.12}						
N2	sp ^{3.97}	1.68	sd ^{3.74} f ^{1.00}						
N3	sp ^{3.88}	1.68	sd ^{3.54} f ^{1.09}						
N4	sp ^{3.97}	1.75	sd ^{3.45} f ^{0.91}						
L	- ~r			I			I		

Table S7. NLM lone spinorbitals (lsp) of the coordinating O and N atoms – hybridization, admixture amount (in %) of Eu empty spinorbitals and the admixture composition.

Theoretical analysis of isolated Eu²⁺ cation

The results presented below were obtained with ADF, version 2019, using Hartree-Fock approach or CAMY-B3LYP functional. The base used was QZ4P (quadruple ζ , four polarization functions), relativity was included as scalar ZORA with predefined spin polarization (35 α electrons and 28 β ones). Fig. S6 presents the calculated levels in the HOMO-LUMO region.

Hartree	CAMY-B3LYP
5dα (-71679 cm ⁻¹), 5dβ (-65626 cm ⁻¹) {	
6sα. (-84151 cm ⁻¹), 6sβ (-82644 cm ⁻¹) ——	$5d\alpha$ (-96464 cm ⁻¹), 5dβ (-89741 cm ⁻¹) 6sα (-102310 cm ⁻¹), 6sβ (-100153 cm ⁻¹)
	$++++++$ 4f α (-170855 cm ⁻¹)
4 <i>f</i> α. (-223693 cm ⁻¹) ++++++	

Fig. S8. Energies of selected orbitals calculated with Hartree-Fock and CAMY-B3LYP DFT approaches. The respective spins are labelled with α and β . The functions denoted as 5*d* were in fact combinations of 5*d* and 6*d*; the admixture of the latter ranged from 15% (CAMY-B3LYP) to 50 % (Hartree-Fock).

It may be noticed that the 6s level is located slightly below the 5d ones in both approaches. Fig. S7 shows energies of calculated transitions. For the need of discussion the $4f \rightarrow 6s$ and $4f \rightarrow 7s$ transitions are marked with asterisks. The Hartree-Fock results show that the $4f \rightarrow 6s$ transition is located above (that is, has higher energy) the lowest $4f \rightarrow 5d$ ones; however the calculations based on CAMY-B3LYP functional yielded the reverse outcome. As a consequence of the spherical symmetry of the system the oscillator strengths are in majority null.

Fig. S9. Calculated spectra of Eu^{2+} . The $f \rightarrow s$ transitions are marked with asterisks.