

ARTICLE

A novel high efficiency polar photocatalyst, $Zn(IO_3)_2$: Synthesis, Crystal Structure and Photocatalytic Activity

Received 00th January 20xx,
Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

DOI: 10.1039/x0xx00000x

Polarized $\text{Zn}(\text{IO}_3)_2$ nanorods have been successfully prepared by a simple hydrothermal method. The crystal structure and morphology of $\text{Zn}(\text{IO}_3)_2$ were detected by XRD, TEM and SEM. $\text{Zn}(\text{IO}_3)_2$ nanorods have been fabricated and demonstrated excellent catalytic activity. The obtained photocatalytic efficiency is higher than that of a commercial TiO_2 P25 catalyst under UV ($\lambda > 254$ nm) light irradiation. By combining time-resolved photoluminescence (PL) and BET measurements, it can be revealed that the enhanced photocatalytic performance of $\text{Zn}(\text{IO}_3)_2$ nanorods can be properly attributed to the promoted separation and prolonged lifetime of the photogenerated carriers caused by the internal polarization field.

Supporting information

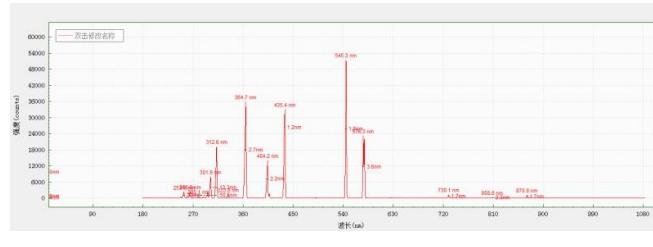


Fig. S1 The wavelength range of mercury lamp.

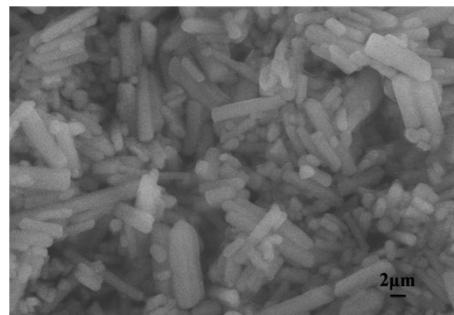


Fig.S3 SEM image of $\text{Zn}(\text{IO}_3)_2$.

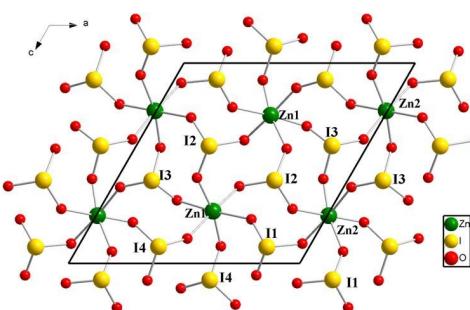


Fig. S2 Ball-and-stick model of $\text{Zn}(\text{IO}_3)_2$ viewed along the b -axis.

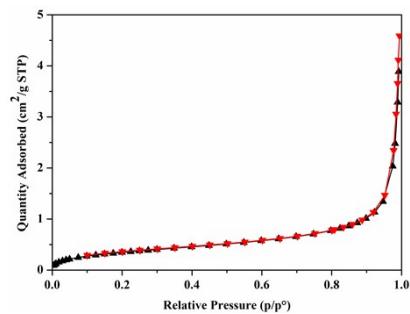


Fig. S4 Nitrogen adsorption and desorption isotherms of $\text{Zn}(\text{IO}_3)_2$.

^a Department of Environmental and Chemical Engineering, Tangshan College, Tangshan 063000, China. Email: sword_liujian@aliyun.com

b. *Key Laboratory of Micro-nano Materials Preparation and Application of Tangshan City, Tangshan 063000, China*

† Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x