Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Tubular polyoxoanion $[(SeMo_6O_{21})_2(C_2O_4)_3]^{10-}$ and its transformations

Valeria S. Pantyukhina^{a,b}, Victoria V. Volchek^a, Vladislav Yu. Komarov^a, Ilia Korolkov^a, Vasili V. Kokovkin^a, Nikolay B. Kompankov^a, Pavel A. Abramov^{*a,c}, Maxim N. Sokolov^a

Supporting information

Table of contents

Table S1. Experimental details	2
Table S2. Selected geometric parameters (Å)	4
Fig. S1. The infinite tubular structures along [10-1] crystal direction in the crystal structure 1.	of Mo6Se- 8
Fig. S2. Comparison of experimental and calculated powder patterns for Mo6Se-1.	9
Fig. S3. XRPD patterns comparison for Mo6Se-2.	10
Fig. S4. XRPD patterns comparison for Mo6Se-2 after MeOH washing	10
Fig. S5. Tubular aggregates in the crystal structure of Mo6Se-2	11
Fig. S6. Pseudo layers in the crystal structure of Mo6Se-2	12
Fig. S7. The coloration of Mo6Se-2 during XRPD experiment	13
Fig. S8. ⁷⁷ Se NMR spectrum of freshly prepared aqueous solution of Mo6Se-2	14
Fig. S9. ⁷⁷ Se NMR spectrum of 22 hours aged aqueous solution of Mo6Se-2	14
Fig. S10. ⁹⁵ Mo NMR spectrum of an aqueous solution of Mo6Se-2	15
Fig. S11. 1D structures in the crystal structure of Mo8-Na.	16

	Mo6Se_1	Mo6Se_2	Mo8_Na
Chemical formula	$ \begin{array}{c} C_{6}H_{42.20}Mo_{12}NNa_{10}O_{77.} \\ _{60}Se_{2} \end{array} $	$C_6H_{16}Mo_{12}N_{0.50}Na_{10.50}O_{63.50}Se_2$	C ₅₀ H ₁₁₁ Mo ₈ N ₅ Na ₂ O ₂₉
M _r	2909.31	2661.79	2059.93
Crystal system, space group	Monoclinic, $P2_1/n$	Triclinic, P ⁻¹	Triclinic, P^{-1}
Temperature (K)	130	150	130
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.6045 (2), 20.8678 (3), 19.2934 (3)	10.5584 (9), 13.5966 (10), 20.6658 (16)	15.8296 (1), 18.5387 (1), 25.6801 (3)
α, β, γ (°)	90, 98.971 (1), 90	97.457 (3), 92.579 (3), 109.222 (3)	89.128 (1), 88.474 (1), 89.873 (1)
$V(Å^3)$	6603.37 (16)	2765.4 (4)	7532.53 (11)
Ζ	4	2	4
μ (mm ⁻¹)	3.51	4.17	1.38
Crystal size (mm)	$0.30 \times 0.15 \times 0.15$	$0.28\times 0.08\times 0.04$	$0.20\times0.15\times0.15$
Diffractometer	New Xcalibur, AtlasS2	Bruker D8 Venture	New Xcalibur, AtlasS2
Absorption correction	Multi-scan <i>CrysAlis PRO</i> 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan <i>SADABS</i> (Bruker-AXS, 2004)	Multi-scan <i>CrysAlis PRO</i> 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T_{\min}, T_{\max}	0.683, 1.000	0.619, 0.746	0.990, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	39479, 15700, 13311	90226, 15526, 12078	73588, 35149, 30375
R _{int}	0.026	0.101	0.021
θ values (°)	$\theta_{\text{max}} = 29.4, \ \theta_{\text{min}} = 3.4$	$\theta_{\text{max}} = 29.7, \theta_{\text{min}} = 1.6$	$\theta_{\rm max} = 29.6, \theta_{\rm min} = 3.3$
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.692	0.696	0.696
Range of <i>h</i> , <i>k</i> , <i>l</i>	$-15 \le h \le 22,$ $-28 \le k \le 22,$ $-25 \le l \le 25$	$-14 \le h \le 14,$ $-18 \le k \le 18,$ $-28 \le l \le 28$	$-21 \le h \le 19,$ $-22 \le k \le 25,$ $-35 \le l \le 32$
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.083, 1.05	0.103, 0.225, 1.12	0.035, 0.080, 1.16
No. of reflections, parameters, restraints	15700, 982, 0	15526, 848, 0	35149, 1693, 0
H-atom treatment	H-atom parameters not defined	H-atom parameters not defined	H-atom parameters constrained
	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0293P)^{2} + 34.3544P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0197P)^{2} + 229.1662P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0223P)^{2} + 16.945P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

Table S1. Experimental details

$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$ 1.9	.99, -1.11	2.69, -3.23	1.80, -0.82
---	------------	-------------	-------------

Computer programs: *CrysAlis PRO* 1.171.38.41 (Rigaku OD, 2015), *APEX2* (Bruker-AXS, 2004), *SAINT* (Bruker-AXS, 2004), *SHELXS2014* (Sheldrick, 2014), *SHELXL2014* (Sheldrick, 2014), ShelXle (Hübschle, 2011), CIFTAB-2014 (Sheldrick, 2014).

	Mo6Se 1			
O1—Mo1	1.697 (3)	O30—Mo7	1.717 (3)	
O2—Mo1	2.340 (3)	O31—Mo12	1.695 (3)	
O3—Mo1	1.935 (3)	O32—Mo12	1.710 (3)	
O3—Mo6	1.933 (3)	O33—Mo11	1.932 (3)	
O4—Mo1	1.712 (3)	O33—Mo12	1.936 (3)	
O5—Mo1	1.899 (3)	O34—Mo11	2.296 (3)	
O5—Mo2	1.901 (3)	O34—Mo12	2.305 (3)	
O6—Mo2	2.305 (3)	O35—Mo11	1.710 (3)	
O7—Mo2	1.703 (3)	O36—Mo11	1.700 (3)	
O8—Mo2	1.920 (3)	O37—Mo10	1.723 (3)	
O8—Mo3	1.926 (3)	O38—Mo10	1.693 (3)	
O9—Mo3	1.699 (3)	O39—Mo9	1.917 (3)	
O10—Mo3	1.709 (3)	O39—Mo10	1.932 (3)	
O11—Mo3	1.897 (3)	O41—Mo9	1.695 (3)	
O11—Mo4	1.892 (3)	O42—Mo10	2.308 (3)	
O12—Mo2	2.299 (3)	O43—Mo8	1.909 (3)	
O12—Mo3	2.325 (3)	O43—Mo9	1.916 (3)	
O13—Mo4	1.714 (3)	O44—Mo9	2.320 (3)	
O14—Mo4	1.706 (3)	O44—Mo10	2.300 (3)	
O15—Mo4	2.309 (3)	O45—Mo10	1.900 (3)	
O15—Mo5	2.306 (3)	O45—Mo11	1.900 (3)	
O16—Mo1	2.278 (3)	O46—Mo9	1.715 (3)	
O16—Mo6	2.361 (3)	O47—Mo8	1.713 (3)	
O17—Mo4	2.308 (3)	O48—Mo8	2.343 (3)	
O18—Mo4	1.928 (3)	O49—Mo7	2.283 (3)	
O18—Mo5	1.933 (3)	O50—Mo9	2.333 (3)	
O19—Mo5	1.708 (3)	O51—Mo8	1.702 (3)	
O20—Mo5	1.704 (3)	O52—Mo7	1.939 (3)	
O21—Mo5	2.267 (3)	O52—Mo8	1.920 (3)	
O22—Mo5	1.901 (3)	O53—Mo7	2.314 (3)	
O22—Mo6	1.913 (3)	O53—Mo8	2.315 (3)	
O23—Mo6	1.715 (3)	O54—Mo3	2.351 (3)	
O24—Mo6	1.692 (3)	O55—Mo2	1.713 (3)	
O25—Mo6	2.261 (3)	O12—Se2	1.698 (3)	
O26—Mo12	2.291 (3)	O15—Se2	1.695 (3)	
O27—Mo11	2.289 (3)	O16—Se2	1.698 (3)	
O28—Mo7	1.698 (3)	O34—Se1	1.694 (3)	
O29—Mo7	1.902 (3)	O44—Se1	1.701 (3)	
O29—Mo12	1.907 (3)	O53—Sel	1.699 (3)	

Table S2. Selected geometric parameters (Å)

M068e_2				
O1—Mo1	1.703 (13)	O32—Mo7	2.271 (11)	
O2—Mo1	2.307 (11)	O33—Mo10	2.318 (10)	
O3—Mo1	1.884 (12)	O34—Mo11	2.315 (11)	
O3—Mo6	1.920 (13)	O35—Mo12	2.307 (11)	
O4—Mo2	2.321 (11)	O36—Mo11	1.697 (12)	
O5—Mo1	2.310 (12)	O37—Mo10	1.925 (11)	
O5—Mo2	2.294 (12)	O37—Mo11	1.936 (11)	
O6—Mo1	1.944 (12)	O38—Mo11	1.900 (12)	
O6—Mo2	1.933 (12)	O38—Mo12	1.921 (11)	
O7—Mo1	1.706 (11)	O39—Mo11	1.690 (12)	
O8—Mo2	1.894 (12)	O40—Mo12	1.707 (12)	
O8—Mo3	1.894 (11)	O41—Mo12	1.705 (12)	
O9—Mo2	1.719 (12)	O42—Mo7	1.952 (12)	
O10—Mo2	1.701 (12)	O42—Mo12	1.895 (12)	
O12—Mo3	1.699 (13)	O43—Mo10	2.387 (11)	
O13—Mo3	1.709 (12)	O43—Mo11	2.287 (12)	
O14—Mo3	1.924 (13)	O44—Mo10	1.705 (13)	
O14—Mo4	1.910 (14)	O45—Mo9	1.907 (11)	
O15—Mo3	2.269 (11)	O45—Mo10	1.899 (11)	
O15—Mo4	2.313 (11)	O46—Mo9	1.699 (12)	
O16—Mo4	1.723 (13)	O47—Mo7	2.283 (12)	
O17—Mo4	1.686 (15)	O47—Mo12	2.294 (11)	
O18—Mo3	2.355 (12)	O48—Mo7	1.909 (13)	
O19—Mo4	2.252 (11)	O48—Mo8	1.905 (13)	
O20—Mo4	1.928 (12)	O49—Mo7	1.734 (13)	
O20—Mo5	1.879 (12)	O50—Mo7	1.703 (12)	
O21—Mo5	1.716 (12)	O51—Mo8	1.708 (13)	
O22—Mo5	1.676 (13)	O52—Mo8	1.908 (14)	
O23—Mo5	2.292 (12)	O52—Mo9	1.933 (14)	
O23—Mo6	2.295 (11)	O53—Mo8	2.318 (12)	
O24—Mo5	1.964 (14)	O53—Mo9	2.323 (12)	
O24—Mo6	1.905 (13)	O54—Mo9	1.710 (13)	
O25—Mo5	2.275 (12)	O55—Mo10	1.711 (12)	
O26—Mo6	1.702 (12)	O5—Sel	1.695 (12)	
O27—Mo6	2.293 (11)	015—Se1	1.701 (11)	
O28—Mo9	2.289 (11)	O23—Se1	1.693 (11)	
O29—Mo8	2.289 (11)	O43—Se2	1.686 (11)	
O30—Mo8	1.693 (14)	O47—Se2	1.696 (11)	
O31—Mo6	1.699 (13)	O53—Se2	1.675 (12)	

Mo8_Na				
O1—Mo1	1.752 (2)	O35—Mo9	1.922 (2)	
O1—Mo3 ⁱ	2.256 (2)	O35—Mo10	1.897 (2)	
O2—Mo1	1.951 (2)	O36—Mo9 ⁱⁱⁱ	2.247 (3)	
O2—Mo2	2.006 (2)	O36—Mo12	1.752 (2)	
O2—Mo4 ⁱ	2.289 (2)	O37—Mo11	1.713 (3)	
O3—Mo2	1.688 (2)	O38—Mo9	1.726 (3)	
O4—Mo2	1.898 (2)	O39—Mo9	1.694 (3)	
O4—Mo3	1.915 (2)	O43—Mo16	1.716 (3)	
O5—Mo2	1.715 (2)	O44—Mo13	1.917 (2)	
O6—Mo1	2.152 (2)	O44—Mo16	1.903 (2)	
O6—Mo1 ⁱ	2.317 (2)	O45—Mo13	1.724 (2)	
O6—Mo2	2.349 (2)	O46—Mo13	1.698 (2)	
O6—Mo3	2.441 (2)	O47—Mo13	1.925 (2)	
O6—Mo4	2.305 (2)	O47—Mo14	1.902 (2)	
O7—Mo1	1.701 (2)	O48—Mo14	1.714 (3)	
O8—Mo1	1.952 (2)	O49—Mo16	1.681 (3)	
O8—Mo2 ⁱ	2.301 (2)	O50—Mo14 ^{iv}	2.277 (2)	
O8—Mo4	2.011 (2)	O50—Mo15	1.950 (2)	
O9—Mo4	1.693 (2)	O50—Mo16	2.018 (2)	
O10—Mo4	1.717 (3)	O51—Mo15	1.696 (2)	
O11—Mo3	1.928 (2)	O52—Mo13 ^{iv}	2.244 (2)	
O11—Mo4	1.899 (2)	O52—Mo15	1.755 (2)	
O12—Mo3	1.723 (2)	O53—Mo14	2.016 (2)	
O13—Mo3	1.697 (2)	O53—Mo15	1.954 (2)	
O17—Mo5	1.721 (2)	O53—Mo16 ^{iv}	2.285 (2)	
O18—Mo6	1.715 (2)	O54—Mo14	1.686 (3)	
O19—Mo7	1.718 (2)	O55—Mo13	2.445 (2)	
O20—Mo8	1.703 (2)	O55—Mo14	2.313 (2)	
O21—Mo7	1.692 (2)	O55—Mo15	2.147 (2)	
O22—Mo6 ⁱⁱ	2.311 (2)	O55—Mo15 ^{iv}	2.308 (2)	
O22—Mo7	2.015 (2)	O55—Mo16	2.354 (2)	
O22—Mo8	1.954 (2)	O56—Mo10	2.012 (2)	
O23—Mo5 ⁱⁱ	2.262 (2)	O56—Mo11 ⁱⁱⁱ	2.294 (2)	
O23—Mo8	1.752 (2)	O56—Mo12	1.959 (2)	
O24—Mo6	2.011 (2)	O57—Mo10	1.717 (2)	
O24—Mo7 ⁱⁱ	2.306 (2)	O58—Mo12	1.700 (3)	
O24—Mo8	1.955 (2)	O5—Na2	2.373 (3)	
O25—Mo5	2.427 (2)	O7—Na2	2.430 (3)	
O25—Mo6	2.339 (2)	O10—Na2	2.409 (3)	

O25—Mo7	2.345 (2)	O12—Na2	2.425 (3)
O25—Mo8	2.133 (2)	O14—Na2	2.479 (3)
O25—Mo8 ⁱⁱ	2.331 (2)	O15—Na1	2.466 (3)
O26—Mo5	1.924 (2)	O15—Na2	2.401 (3)
O26—Mo7	1.894 (2)	O16—Na1	2.385 (3)
O27—Mo5	1.692 (2)	O17—Na1	2.365 (3)
O28—Mo5	1.929 (3)	O18—Na1	2.408 (3)
O28—Mo6	1.898 (2)	O19—Na1	2.382 (3)
O29—Mo6	1.691 (3)	O20—Na1	2.467 (3)
O30—Mo10	1.699 (2)	O37—Na4	2.403 (3)
O31—Mo9	1.932 (2)	O38—Na4	2.367 (3)
O31—Mo11	1.894 (2)	O40—Na4	2.363 (3)
O32—Mo10 ⁱⁱⁱ	2.296 (2)	O41—Na3	2.431 (3)
O32—Mo11	2.018 (2)	O41—Na4	2.482 (3)
O32—Mo12	1.958 (2)	O42—Na3	2.406 (3)
O33—Mo11	1.701 (2)	O43—Na3	2.380 (3)
O34—Mo9	2.447 (2)	O45—Na3	2.388 (3)
O34—Mo10	2.351 (2)	O48—Na3	2.403 (3)
O34—Mo11	2.346 (2)	O51—Na3	2.426 (3)
O34—Mo12	2.119 (2)	O57—Na4	2.377 (3)
O34—Mo12 ⁱⁱⁱ	2.322 (2)	O58—Na4	2.463 (3)

Symmetry code(s): (i) -*x*+1, -*y*+2, -*z*+2; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) -*x*, -*y*+1, -*z*+1; (iv) -*x*, -*y*+1, -*z*.

Fig. S1. The infinite tubular structures along [10-1] crystal direction in the crystal structure of **Mo6Se-1**.

Fig. S2. Comparison of experimental and calculated powder patterns for Mo6Se-1.

Fig. S3. XRPD patterns comparison for Mo6Se-2.

Fig. S4. XRPD patterns comparison for Mo6Se-2 after MeOH washing.

Fig. S5. Tubular aggregates in the crystal structure of Mo6Se-2.

Fig. S6. Pseudo layers in the crystal structure of Mo6Se-2.

Fig. S7. The coloration of Mo6Se-2 during XRPD experiment.

Fig. S8. ⁷⁷Se NMR spectrum of freshly prepared aqueous solution of Mo6Se-2.

Fig. S9. ⁷⁷Se NMR spectrum of 22 hours aged aqueous solution of Mo6Se-2.

Fig. S10. ⁹⁵Mo NMR spectrum of an aqueous solution of Mo6Se-2.

Fig. S11. 1D structures in the crystal structure of Mo8-Na.