Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Non-enzymatic electrochemical detection of glucose and ammonia using ternary bio-nanocomposites

Sayfa Bano¹, Adil Shafi Ganie¹, Saima Sultana¹, Mohammad Zain Khan^{1,2}*, Suhail Sabir^{1*}

¹Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University Aligarh 202 002, Uttar Pradesh, India

²Industrial Chemistry Research Laboratory, Department of Chemistry, Aligarh Muslim University Aligarh 202 002, Uttar Pradesh, India

New Journal of Chemistry

Fig. S1. EDAX spectra showing elemental composition of (a) CST nanoparticles (b) P/CST/Ch₁ bio-nanocomposites

Fig. S2. Cyclic voltammograms of CST nanoparticles as electrocatalyst

Fig. S3. (**a**, **b**, **c**) Cyclic voltammetry plot of different nanocomposites as electrocatalyst with presence and absence of glucose in 0.1 M NaOH solution

Fig. S4. (a) Chronoamperogram of P/CST/Ch₁ bio- nanocomposites as electrocatalyst at varying potential ranging from -0.12 to -0.52 V in presence of glucose and (b) for -0.15 to -0.75 V in presence of aqueous ammonia.