Design strategy of ultrasmall Gd₂O₃ nanoparticles for T₁ MRI

with high performance

Jianfeng Yang^a, Pengyuan Shan^a, Qingling Zhao^a, Shuquan Zhang^b, Lanlan Li^a,

Xiaojing Yang^a, Xiaofei Yu^a, Zunming Lu^a, Ziwu Wang^c, Xinghua Zhang^{a,*}

^aSchool of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China

^bDepartment of Orthopedics, Tianjin Nankai Hospital, Nankai, Tianjin, China

^cDepartment of Physics, Tianjin University, Tianjin, 300354 China

*Email: zhangxinghua@hebut.edu.cn

Supporting Information

Fig. S1 The curves of r_1^{IS} modulated with r_{M-H} as Larmor frequency in the range of 1-500 MHz.

Fig. S2 Electronic relation time (a) T_{1e} and (b) T_{2e} as a function of proton Larmor frequency (0.1-500 MHz) with S = 7/2 (Gd).

Fig. S3 The curves of R_{1D} modulated by (a) T_{1e}and (b) T_{2e} with increasing Larmor frequency.

Fig. S4 (a) Dipolar correlation time τ_{c1} as a function of electronic relation time T_{1e} with various $\tau_R = 0.1-1000$ ns and fixed $\tau_M = 20$ ns, (b) τ_{c1} as a function of T_{1e} with various $\tau_M = 0.2-2000$ ns and fixed $\tau_R = 10$ ns; (c) Dipolar correlation time τ_{c2} as a function of electronic relation time T_{2e} with various $\tau_R = 0.1-1000$ ns and fixed $\tau_M = 20$ ns, (d) τ_{c2} as a function of T_{2e} with various $\tau_M = 0.2-2000$ ns and fixed $\tau_M = 0.1-1000$ ns and fixed $\tau_M = 20$ ns, (d) τ_{c2} as a function of T_{2e} with various $\tau_M = 0.2-2000$ ns and fixed $\tau_R = 10$ ns.

Fig. S5 The curves of R_{1D} modulated with τ_M (0.1-1000 ns) for (a) $\tau_R = 1$ ns, (b) $\tau_R = 10$ ns, (c) $\tau_R = 100$ ns, (d) $\tau_R = 1000$ ns as Larmor frequency in the range of 1-500 MHz.

Fig. S6 The curves of R_{1D} modulated with τ_R (0.1-1000 ns) and (a) $\tau_M = 2$ ns, (b) $\tau_M = 20$ ns, (c) $\tau_M = 200$ ns, (d) $\tau_M = 2000$ ns as Larmor frequency in the range of 1-500 MHz.

Fig. S7 The curves of r_1^{IS} modulated with τ_M (0.1-1000 ns) and (a) $\tau_R = 2$ ns, (b) $\tau_R = 5$ ns, (c) $\tau_R = 20$ ns, (d) $\tau_R = 100$ ns as Larmor frequency in the range of 1-500 MHz.

Fig. S8 The curves of r_1^{IS} modulated with τ_R (0.1-1000 ns) and (a) $\tau_M = 2$ ns, (b) $\tau_M = 5$ ns, (c) $\tau_M = 20$ ns, (d) $\tau_M = 100$ ns as Larmor frequency in the range of 1-500 MHz.

Fig. S9 r_1^{IS} as a function of τ_M (0.1-1000 ns) with various $\tau_R = 0.1$ -1000 ns and (a) $B_0 = 0.1$ T, (b) $B_0 = 1$ T, and (c) $B_0 = 10$ T.

Fig. S10 r_1^{IS} as a function of τ_R (0.1-1000 ns) with various $\tau_M = 0.1$ -1000 ns and (a) $B_0 = 0.1$ T, (b) $B_0 = 1$ T, and (c) $B_0 = 10$ T.

Fig. S11 r_1^{IS} as a function of r (0.5-20 nm) with various $\tau_M = 0.1$ -1000 ns and (a) $B_0 = 0.1$ T, (b) $B_0 = 1$ T, and (c) $B_0 = 10$ T.

Fig. S12 r_1^{OS} as a function of proton Larmor frequency (1-500 MHz) with various $T_{1e} = 1-1000$ ns and (a) $\tau_d = 10$ ns, (b) $\tau_d = 100$ ns, and (c) $\tau_d = 1000$ ns.

Fig. S13 r_1^{OS} as a function of proton Larmor frequency (1-500 MHz) with various $\tau_d = 1-1000$ ns and (a) $T_{1e} = 1$ ns, (b) $T_{1e} = 10$ ns, and (c) $T_{1e} = 1000$ ns.

Fig. S14 TGA curve of the OA-Gd₂O₃ NPs with temperature increasing from RT to 800 °C.

Fig. S15 Magnetization curve of OA-Gd₂O₃ NPs in the magnetic field from -7 to 7 T.

Fig. S19 In vivo T_1 MR images of mice for kidney after injection with different times.

Fig. S20 In vivo T_1 MR images of mice for bladder after injection with different times.

Fig. S21 In vivo T₁ MR images of mice for liver after injection with different times.

Fig. S22 In vivo T_1 MR signal intensity of mice after injection with different times for (a) tumor, (b) kidney, (c) bladder, and (d) liver.

Table S1. The rotation times of nanoparticles with different radii (0.5-10 nm) at 310 K.

r/nm	0.5	1.0	1.5	2.0
$\tau_{\rm R}/{\rm ns}$	0.08506	0.6805	2.2960	5.4452
r/nm	2.5	4.0	5.0	10
$\tau_{\rm R}/\rm ns$	10.632	45.291	88.483	707.86

	ruole 52 Relationship e			under unterent magnetie neids.	
B ₀ /T	1	3	7	10	
	$\tau_R=6$ ns	$\tau_R=2$ ns	$\tau_R=1$ ns	$\tau_R=0.6$ ns	
r ₁ ^{IS}	$\tau_M=10 \text{ ns}$	$\tau_M=5 \text{ ns}$	$\tau_M=1$ ns	$\tau_M=1$ ns	
	$r_1^{IS}=56.98 \text{ mM}^{-1} \text{ s}^{-1}$	$r_1^{IS}=19.54 \text{ mM}^{-1} \text{ s}^{-1}$	$r_1^{IS}=8.41 \text{ mM}^{-1} \text{ s}^{-1}$	$r_1^{IS}=5.89 \text{ mM}^{-1} \text{ s}^{-1}$	
r_1^{OS}	$\tau_d=1$ ns	$\tau_d=1$ ns	$\tau_d=1$ ns	$\tau_d=1$ ns	
	$r_1^{OS}=0.92 \text{ mM}^{-1} \text{ s}^{-1}$	$r_1^{OS}=0.63 \text{ mM}^{-1} \text{ s}^{-1}$	$r_1^{OS}=0.55 \text{ mM}^{-1} \text{ s}^{-1}$	$r_1^{OS}=0.53 \text{ mM}^{-1} \text{ s}^{-1}$	
r_1^{IS}/r_1	98.41%	96.88%	93.86%	91.74%	
r_1^{OS}/r_1	1.59%	3.12%	6.14%	8.26%	

Table S2 Relationship between optimal r_1^{IS} and r_1^{OS} under different magnetic fields.