Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information (ESI⁺)

Rhodamine phenol-based fluorescent probe for visual detection of GB and its simulant DCP

Shouxin Zhang ^a, Chuan Zhou ^a, Bo Yang ^a, Yue Zhao ^a, Lingyun Wang ^a,

Bo Yuan^{a, b}, Heguo Li^{a,*}

^aState Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China

^bBeijing Institute of Pharmaceutical Chemistry, Beijing 102205, PR China

Contents

1. NMR and HR-MS spectra of RBNP and RBMP	S2-S4
2. Spectra of of RBMP with DCP	S4-S5
3. Limit of detection (LOD) for RBNP and RBMP with DCP	S6
4. Kinetics study	S7
5. Interference experiment	S 8
6. Sensing mechnism	S9
7. Theoretical study	S10
8. Comparision of this work and some representative DCP probes in the past five	e years

S11-

S12

1. NMR and HR-MS spectra of RBNP and RBMP

Fig. S1 ¹H NMR spectra of **RBNP** (up) and **RBMP** (down) in DMSO- d_6

Fig. S2 ¹C NMR spectra of RBNP (up) and RBMP (down) in DMSO- d_6

Fig. S3 HR-MS spectra of RBNP (up) and RBMP (down)

2. Spectra for RBMP with DCP

Fig. S4 (a) UV-Vis spectra of **RBMP** (100 μ M) in DMF upon additions of DCP (1000 μ M). Inset: The color change without and with the addition of DCP. (b) Fluorescence spectra of **RBMP** (50 μ M) in DMF upon additions of DCP (1000 μ M). Inset: The fluorescence change without and with the addition of DCP.

3. Limit of detection (LOD) for RBNP and RBMP with DCP

Fig. S5 (a) The plot of fluorescent intensity at 588 nm of **RBNP** with the concentration of DCP in DMF. (b) The plot of absorbance at 563 nm of **RBNP** with the concentration of DCP in DMF.

From **Fig. S5a**, the slope of the fitting curve k1 and k2 is respectively 2.7113×10^{6} and 1.1624×10^{6} in the DCP concentration of $0-1.0 \times 10^{-4}$ M and $0-4.0 \times 10^{-4}$ M. Then, according to the standard deviation of blank sample $\delta = 0.0013$ and the formula (LOD = $3\delta/k$), the limit of detection (LOD) was calculated as 1.4×10^{-9} M (1.4 nM) and 3.3×10^{-9} M (3.3 nM) in the DCP concentration range of $0-1.0 \times 10^{-4}$ M and $0-4.0 \times 10^{-4}$ M.

From **Fig. S5b**, the slope of the fitting curve k is 1.001×10^2 in the DCP concentration from 0 to 5.0×10^{-4} M. Then, according to the standard deviation of blank sample $\delta = 1.0 \times 10^{-4}$ and the formula (LOD = $3\delta/k$), the limit of detection (LOD) was calculated as 3.1×10^{-7} M (0.31 µM) in the DCP concentration range of $0-5.0 \times 10^{-4}$ M.

For the probe RBNP, the LOD of FL method was much lower than that of UV-Vis method in the DCP concentration range of $0-4.0 \times 10^{-4}$ M.

Fig. S6 (a) The plot of fluorescent intensity at 586 nm of **RBMP** with the concentration of DCP in DMF. (b) The plot of absorbance at 562 nm of **RBMP** with the concentration of DCP in DMF.

From **Fig. S6a**, the slope of the fitting curve k is 9.6408×10^3 in the DCP concentration from 0 to 10.0×10^{-4} M. Then, according to the standard deviation of blank sample $\delta = 0.0016$ and the formula (LOD = $3\delta/k$), the limit of detection (LOD) was calculated as 5.0×10^{-7} M (0.5 µM) in the DCP concentration range of $0 - 1.0 \times 10^{-4}$ M.

From **Fig. S6b**, the slope of the fitting curve k is 1.602×10^2 in the DCP concentration from 0 to 10.0×10^{-4} M. Then, according to the standard deviation of blank sample $\delta = 1.3 \times 10^{-4}$ and the formula (LOD = $3\delta/k$), the limit of detection (LOD) was calculated as 2.4×10^{-6} M (2.4μ M) in the DCP concentration range of $0 - 1.0 \times 10^{-4}$ M.

For the probe RBMP, the LOD of FL method was lower than that of UV-Vis method in the DCP concentration range of $0-1.0 \times 10^{-4}$ M.

4. Kinetics Study

Fig. S7 Time-dependent fluorescence intensity of RBNP (50 μ M) at 588 nm with the addition of DCP (5 mM, 10mM, 15mM).

Fig. S8 Pseudo-first-order kinetic plots of reaction between RBNP (50 μ M) and different concentrations of DCP (5 mM, 10mM, 15mM) in DMF.

5. Interference experiment

Fig. S9 UV-Vis absorption (a), fluorescent intensity (b) of **RBNP** with DCP, metal ion and HAc (10 equiv.). (c) The color changes of **RBNP** with DCP metal ion and HAc (10 equiv.) under sunlight (up) and 365nm UV light (down).

Fig. S10 UV-Vis absorption of RBNP (100 μ M) to DCP (1000 μ M) and other interferents (1000 μ M).

6. Sensing mechnism

Fig. S11 HR-MS of RBNP-OP

Fig. S12 UV-Vis spectra of RBNP (50 μ M) in DMF without and with TEA (1000 μ M).

Inset: The color change without and with the addition of TEA.

Fig. S13 HR-MS of RBNP-DCP

7. Theoretical Study

Table S1: Selected electronic transition energies (eV), oscillator strengths (f) and main orbital configurations of **RBNP** and **RBNP-OP**. [a] Only selected transition states were considered. The numbers in parentheses are the transition energy in wavelength. [b] Oscillator strength. [c] H stands for HOMO and L stands for LUMO.

Molecules	Electronic transition	Transition Energy ^a	f ^b	Composition ^c	(Composition) %
RBNP	$S_0 \rightarrow S_7$	3.8656eV 320.74nm	0.0191	H→L+2	97.2
	$S_0 \rightarrow S_8$	3.9619eV 312.94nm	0.1400	H-3→L, H-4→L	62.9, 23.6
RBNP-OP	$S_0 \rightarrow S_1$	2.5559eV 485.09nm	0.9583	H→L	98.4
	$S_1 \rightarrow S_0$	2.2906eV 541.27nm	1.1174	H→L	99.6

 Table S2: Energies of the highest occupied molecular orbital (HOMO) and lowest

 unoccupied molecular orbital (LUMO) of RBNP and RBNP-OP.

Species	E _{HOMO} (a.u)	E _{LUMO} (a.u)	ΔE(a.u)	ΔE(eV)	ΔE(kJ/mol)
RBNP	-0.193131	-0.090331	0.102800	2.797327	269.901049
RBNP-OP	-0.210793	-0.108325	0.102468	2.788288	269.029001

Fig. S14 Partial atomic charges of RBNP and RBMP

Chamical structure	LOD for	Vapor detection		Visual detection for	Deferrer er
	solution	Concentration	Response time	naked eye	Kelerence
	-	0.377 ppm	30 s	-	J. Mater. Chem. C 4 (2016) 10105-10110
	0.71 µg/L	132 ppm	3 s	-	Anal. Chem. 88 (2016) 9259-9263
	14.2 μΜ	-	-	colorless to pink	Sensors and Actuators B 235 (2016) 447-456
	1.6 µM	-	-	Orange to cyan(UV- light)	New J. Chem. 41 (2017) 6661-6666
Boc n-Bu ^{-N}	21 nM	130 ppm	5 min	white to yellow	J. Mater. Chem. C 5 (2017) 7337-7343
	0.1 µM	50 ppm	1 min	colorless to light yellow	Analyst 143 (2018) 4171-4179
	-	130 ppm	100 s	light yellow to yellow	ACS Sensors 3 (2018) 1445-1450
	0.065 μM	-	-	green to light gold	Journal of Hazardous Materials 342 (2018) 10-19
	1.87 ppb	50 µM	3 s	-	Sensors and Actuators B 255 (2018) 176-182
OH N O N N	5.6 nM	-	30 s	colorless to deep pink	Scientific Reports 8 (2018) 3402

8. Comparision of this work and some reported DCP probes in the past five years.

OH N-OH	0.14 µM	10 μΜ	30 s	colorless to yellow	Dyes and Pigments 170 (2019) 107585
N OH N OH N OH H	9.66 nM	-	-	colorless to pink	Dyes and Pigments 171 (2019) 107712
	93.8 nM	6 ppm	60 s	colorless to light brown	New J. Chem. 43 (2019) 8627-8633
	2 μΜ	DCP 20ppm GD 40 ppm	10min	colorless to pink	Molecules 24 (2019) 827
Boc n-Bu ^r N NOH	0.16 µM	130 ppm	20 s (fiber)	-	Sensors & Actuators B 318 (2020) 127937
HO S	0.186 µM	100 ppm	2 min	-	Sensors & Actuators B 319 (2020) 128282
N S N S N N H	15.8 nM	100 ppm	60 s	-	Journal of Photochemistry & Photobiology A: Chemistry 388 (2020) 112188
	1.4 nM	DCP 130 ppm GB 100 ppm	30 s	light yellow to pink	This work