Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

A new 2D lanthanum based microporous MOF for efficient synthesis of cyclic carbonates through CO₂ fixation

Sabuj Kanti Das,^a Anirban Ghosh,^a Sudip Bhattacharjee,^a Avik Chowdhury,^a Partha Mitra,^b Asim Bhaumik^{*,a}

^aSchool of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India. Address for correspondence. E-mail: msab@iacs.res.in

^bSchool of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India

No.	Contents
Table S1	Crystal data and structure refinement for La-5-SIP-MOF.
Table S2	Bond distance and bond angles obtained from CIF of La-5-SIP- MOF.
Figure S1	2D layered view of La-5-SIP MOF.
Figure S2	FT-IR spectra of 5-NaSIP ligand and La-5-SIP-MOF.
Figure S3	FTIR of reused catalyst.
Figure S4	PXRD of reused catalyst.
Figure S5	TGA profile diagram of La-5-SIP-MOF.
Section S1	Acid Digestion test.
Figure S6	¹ H NMR of La-5-SIP MOF after acid digestion
Figure S7	UHR-TEM images of La-5-SIP-MOF before and after catalysis.
Figure S8	Optimization of solvent in terms of yield.
Figure S9	Time vs conversion plot after hot filtration test in the cycloadditon of CO_2 over epichlorohydrine by La-5-SIP-MOF.
Figure S10	¹ H NMR of pure epichlorohydrine and after 30 minutes of reaction.
Table S3	¹ H NMR data of cyclic carbonates.
Table S4	Comparison table of Catalytic activity with previously reported catalyst
Figure S11 (a-h)	Proton NMR spectra of the cyclic carbonates
Section S2	Calculation of Turnover Number (TON) and Turnover frequency (TOF)

Empirical formula	C ₈ H ₁₁ La O ₁₁ S			
Formula weight	446.07			
Temperature	293 K			
Wavelength	0.71073 Å			
Crystal system, space group	Orthorhombic, Pna2(1)			
Unit cell dimensions	a=7.2429(17) Å,			
	b=16.825(4) Å,			
	c = 10.555(3) Å,			
	$\alpha = 90^{\circ}$			
	$\beta = 90^{\circ}$			
	$\gamma = 90^{\circ}$			
Volume	1286.3(5) Å ³			
Z, Calculated density	4, 2.303 Mg/m ³			
Absorption coefficient	3.540 mm-1			
F (000)	848			
Theta range for data collection	2.28 to 26.49°			
Limiting indices	-7<=h<=9, -21<=k<=21,			
	-12<=l<=13			
Absorption correction	Semi-empirical from equivalents			
Max. And min. Transmission	0.615 and 0.702			
Refinement method	Full-matrix least-squares on F2			
Data / restraints / parameters	2572 / 1 / 190			
Goodness-of-fit on F2	1.093			
R factor (%)	R= 2.17, wR2 = 5.56			
Cell formulae units, Z	4			

 Table S1. Crystal data and structure refinement for La-5- SIP MOF

Table S2. Bond distance and bond angles obtained from CIF of La-5-SIP-MOF

La(1)-O4	2.511	La(1)-O(6)	2.518
La(1)-O(56)	2.548	La(1)-O(52)	2.574
La(1)-O(1)	2.573	La(1)-O(3)	2.581
La(1)-O(2)	2.592	La1 O55	2.592
La1 O51	2.616	La1 C100	2.949
La1 C4	La1 C4 2.960		1.467
C4 O51	C4 O51 1.249		1.263
C4 C8	1.519	C100 O2	1.261
C100 O1	1.258	C100 C5	1.528
O4 La1 O6	140.67	O4 La1 O56	71.12
O6 La1 O56	71.86	O4 La1 O52	134.20
O6 La1 O52	70.96	O56 La1 O52	108.28
O4 La1 O1	133.07	O6 La1 O1	78.37
O56 La1 O1	148.15	O52 La1 O1	71.24
O4 La1 O3	85.73	O6 La1 O3	69.77
O56 La1 O3	70.50	O52 La1 O3	138.77
O1 La1 O3	88.95	O4 La1 O2	83.67
O6 La1 O2	115.80	O56 La1 O2	136.69
O52 La1 O2	114.49	O1 La1 O2	50.42
O3 La1 O2	73.07	O52 La1 O55	70.75
O1 La1 O55	80.51	O3 La1 O55	142.68
O2 La1 O55	72.67	O4 La1 O51	91.56
O6 La1 O51	87.88	O56 La1 O51	69.83

Figure S1: 2D layer view of La-5-SIP-MOF.

Figure S2: FT-IR spectra of 5-NaSIP ligand (a) and La-5-SIP-MOF (b).

Figure S3: FTIR spectrum of reused catalyst.

Figure S4: PXRD of reused catalyst (a) and activated catalyst (b).

Figure S5: TGA profile diagram of La-5-SIP-MOF.

Section S1: Acid digestion test

To perform the acid digestion test, 5 mg of the La-5-SIP-MOF material was taken along with 20μ I of HF and 0.5ml DMSO-d⁶ in an eppendorf tube and then the solution was sonicated for 30 min. The portion of the solution was taken in a NMR tube to obtain ¹HNMR analysis. Two major peaks at 8.42 and 8.36 ppm was appeared with 1:2 ratio for the H(b) and H(a) protons respectively. Which indicates the structural integrity is retained for the ligand in this La-5-SIP-MOF.

Figure S6: ¹H NMR of La-5-SIP-MOF after acid digestion.

Figure S7: UHR-TEM images of La-5-SIP-MOF: a. before catalysis; b. after catalysis.

Figure S8: Optimization of the product yield over different solvents used in the CO_2 fixation over epichlorohydrine.

Figure S9: Time vs conversion test after hot filtration in the CO_2 fixation over epichlorohydrine.

Figure S10: ¹H NMR of pure epichlorohydrine and after 30 min of CO₂ fixation reaction.

 Table S3: ¹H NMR data of cyclic carbonates.

Entry	Product	¹ H NMR				
1.	CIO	¹ H NMR (400 MHz, TMS, CDCl ₃): δ (ppm) 4.98-4.92(m,1H), 4.61- 4.57(t,H), 4.43-4.40(dd,1H), 3.79-3.71(m, 2H).				
		¹ H NMR (400 MHz, TMS, CDCl ₃): δ (ppm) 4.87-4.82(m,1H), 4.57- 4.53(t,1H), 4.04-4(t,1H), 1.49-1.48(d,3H).				
2.	γ°	¹ H NMR (400 MHz, TMS, CDCl ₃): δ (ppm), 4.79-4.73(m,1H), 4.48- 4.44(t,1H), 4.38-4.35(dd,1H), 3.62-3.58(), 3.53-3.49(ddd,2H), 1.18(s,9H).				
4.		¹ H NMR (400 MHz, TMS, CDCl ₃): δ (ppm) 5.92-5.81(m,1H), 5.30- 5.21(dd,1H), 4.83-4.79(m,1H),4.49-4.39(m,2H), 3.74-3.62(m, 2H).				
5.		¹ H NMR (400 MHz, TMS, CDCl ₃): δ (ppm) 4.84-4.80(m,1H), 4.55(m,1H), 4.05(m,1H), 1.69-1.50(m), 1.69-1.61(m,2H), 1.50- 1.22(m,8H), 1-0.83(m,3H).				
6.		¹ H NMR (400 MHz, TMS, CDCl ₃): δ (ppm) 7.434-7.351(m,3H), 7.341-7.259(m,2H), 5.699-5.646(t,1H), 4.820-4.765(t, 1H), 4.359- 4.304(t, 1H).				
7.		¹ H NMR (400 MHz, TMS, CDCl ₃): δ (ppm) 4.76(m,1H), 4.45(t,1H),4.34(dd,1H) 3.56(qd,2H),3.46(t,2H) 1.59-1.54- 1.30(m,3H), 0.90(t,3H).				

¹H NMR (400 MHz, CDCl₃): δ (ppm) 4.68-4.63(m,2H), 1.90-1.87(m,4H), 1.68-1.62(m,2H),1.47-1.42(m,2H).

Table S4. Comparison table of catalytic activity of La-5-SIP-MOF for CO_2 fixation over epichlorohydrine.with previously reported catalyst.

Catalyst	Pressure (MPa)	Temperature (°C)	Time (h)	TON	TOF (h⁻¹)	Ref.
Zn@SBMMP	2	80	10	204	20.4	1
AI-CMP	3	100	1	187	187	2
Co-CMP	3	100	1	201	201	2
Al (Salen)/PS	10	80	6	47	7.8	3
Al (Salen)/PEA	10	80	6	7	1.16	3
Cr-MIL-101	0.8	RT	24	247	10.29	4
Ce ₂ NDC ₃	0.1	RT	8	360	45	5
Al1cat	0.1	110	48	41	0.85	6
La-5-SIP-MOF	0.5	RT	1	141.53	141.53	This Work

Figure S11 (a-h): ¹H NMR spectrum of cyclic carbonates.

Section S2: Calculation of Turnover Number (TON) and Turnover frequency (TOF).

 $TON = \frac{No.\,moles\,of\,product\,formed}{No.\,of\,moles\,of\,active\,site\,in\,the\,catalyst}$

Here we used 6mg of catalyst for cyclic carbonate conversion.

The molecular formulae of La-5-SIP-MOF = C8 H3 La O11 S

The formulae weight of our La-5-SIP-MOF = 446.07

So, from formulae weight we can say that one equivalent of La-5-SIP-MOF contains one equivalent of La atom.

The molecular weight of one La atom is 138.9057.

Thus, the moles of catalyst required = 6 mg.

So. 0.013×10^{-3} moles of catalyst required.

We get 98% of products which equivalent to 1.196 × 10^{-3} mol.

$$TON = \frac{1.196 \times 10^{-3}}{0.013 \times 10^{-3}} = 150.76$$

Now,

$$TOF = \frac{TON}{Time}h^{-1}$$

As the reaction was conducted for 1 hour, the TOF is equal to TON.

Section S3: Synthesis procedure of cyclic carbonate

The reaction was carried out in a high pressure autoclave reactor. Here a dried autoclave of inner volume 100 ml charged with 2-(chloromethyl)oxirane (2 mmol), 6 mg La-5-SIP MOF, along with TBABr (0.062 mmol) as a co-catalyst and acetonitrile (10ml) as solvent. Then the reactor was sealed and purged with CO_2 (5 bar) at room temperature. The reaction was carried out under continuous stirring for 1 h. After that, the reaction mixture was filtered to separate the catalyst and extracted with ethyl acetate. Solvents were evaporated under reduced pressure. The colourless liquid formed after evaporation was characterised by ¹H NMR in CDCl₃.

References:

- 1. S. Bhunia, R. A. Molla, V. Kumari, S. M. Islam and A. Bhaumik, Chem. Commun., 2015, **51**, 15732-15735.
- 2. M. Alvaro, C. Baleizao, E. Carbonell, M. E. Ghoul, H. Garcí and B. Gigante, Tetrahedron, 2005, 61, 12131-12139.
- 3. Y. M. Shen, W. L. Duan and M. Shi, J. Org. Chem., 2003, 68, 1559-1156.
- 4. O. V. Zalomaeva, A. M. Chibiryaev, K. A. Kovalenko, O. A. Kholdeeva, B. S. Balzhinimaev and V. P. Fedin, J. Catal., 2013, 298, 179-185.
- 5. S. K. Das, S. Chatterjee, S. Bhunia, A. Mondal, P. Mitra, V. Kumari, A. Pradhan, A. Bhaumik, Dalton Trans., 2017, 46, 13783-13792.
- 6. S. Supasitmongkol and P. Styring, Catal. Sci. Technol., 2014, 4, 1622-1630.