Co$_2$P Nanoparticle/Multi-Doped Porous Carbon nanosheet for Oxygen Evolution Reaction

Xinxin Sang,*a Hengbo Wu,a Nan Zang,a Huilian Che,a Dongyun Liu,a Xiangdao Nie,a Dawei Wang,a Xiaoxue Ma,b Wei Jin*a

a The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
b Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China.

Experimental

Reagents and materials
Cobaltous nitrate hexahydrate (Co(NO$_3$)$_2$·6H$_2$O, 99% pure), potassium hydroxide (KOH, 90%) and anhydrous ethanol were purchased from Sinopharm Chemical Reagent Co., Ltd used without further purification. Analytical-grade iridium(IV) oxide (IrO$_2$) and 5% Nafion were bought from Macklin and Alfa Aesar, respectively. 2-methylimidazole (Hmim, 99% pure), branched polyethylenimine (PEI, Mw = 10,000 g/mol), and phytic Acid (PA, 50% in water) were supplied by Sigma-Aldrich.

Sample preparation
Firstly, leaf-like ZIF-L was synthesized with a Hmim to cobalt ions molar ratio of 4 at room temperature as previous reported. Typically, 1 mmol of Co(NO$_3$)$_2$·6H$_2$O and 4 mmol of Hmim were dissolved in 5 mL deionized water respectively, and then the aqueous solution of Co(NO$_3$)$_2$ was mixed with the Hmim solution under stirring. After stirring for 2 hours, 0.5 mL PEI with a concentration of 0.05 g/mL was added. ZIF-L/PEI can be obtained 5 minutes later by centrifugation and re-dispersed in ethanol. Finally, 0.1 mL PA solution was introduced into ZIF-L/PEI dispersion. The product ZIF-L/PEI/PA was collected by repeated centrifugation (at 6000 rpm for 20 min) and
washed with water for three times, and then dried in an oven at 70 °C overnight. The ZIF-L/PEI/PA hybrid was then heated in a tube furnace under Ar atmosphere from 50 °C to 700 °C with a heating rate of 2 °C min⁻¹, and maintained at 800 °C for 2 h. The final products were grounded to fine powders, named as Co₂P@CoNPC. As comparisons, the carbonization products of ZIF-L and ZIF-L/PEI are named Co@NC-Z and Co@NC-ZP. Moreover, ZIF-L/PEI/PA hybrids with different volumetric PA addition were also carbonized as catalysts. Catalysts obtained from different ZIF-L/PEI/PA hybrids were named as ZPP₀.₀₅ and ZPP₀.₅ based on volume of PA solution 0.05 and 0.5 mL.

Materials characterization

The morphology of the samples were observed by the scanning electron microscope (SEM, Hitachi S4800) and transmission electron microscopic (TEM, JEM-2100F). The crystalline phase was identified by X-ray diffraction (XRD, BRUKER D8 ADVANCE X-ray diffractometer, Cu-Kα X-ray source). X-ray photoelectron spectroscopy (XPS) is recorded on an ESCALab220i-XL spectrometer with a 300W Al Kα X-ray source.

Electrochemical measurements

The oxygen evolution reactions (OER) was performed on a CHI760E electrochemical workstation (Shanghai Chenhua, China). Electrodes were prepared by drop-casting ink containing catalyst powder on a glassy carbon electrode. 5 mg of the electrocatalyst sample was sonicated in a mixture of 1 mL deionized water and ethanol (v:v = 1:1) and 10 μl Nafion for 60 min to form a homogeneous catalyst ink (5 mg·mL⁻¹). The activities of catalysts were measured via a conventional three-electrode system, including graphite rod auxiliary electrode and Ag/AgCl reference electrode. The catalyst ink was then coated onto the glassy carbon electrode at a loading of 10 μl and dried at room temperature. The loading of the catalysts for the activity evaluation is calculated to be 0.255 mg·cm⁻². The OER activities of catalysts were measured in O₂-saturated 1 M KOH aqueous solution at 1600 rpm rotation rates and a scan rate of 5 mV·s⁻¹. All results reported in this work were converted to
the RHE scale according to the Nernst equation \(E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.059 \times \text{pH} + 0.197 \).

Fig. S1 (A) SEM image, (B) elemental mapping and (C) energy dispersive X-ray (EDX) spectrum of ZIF-L/PEI/PA.

Fig. S2 Survey XPS spectra of (a) Co@NC-Z, (b) Co@NC-ZP and (c) Co\(_2\)P@CoNPC.

Fig. S3 Linear scan voltammetry (LSV) of various samples for OER: ZPP\(_{0.05}\) (black) and ZPP\(_{0.5}\) (blue).
Fig. S4 XRD patterns of ZPP$_{0.05}$ (black) and ZPP$_{0.5}$ (blue).

Fig. S5 XRD patterns of Co$_2$P@CoNPC hybrids after stability test.

Fig. S6 SEM images of Co$_2$P@CoNPC hybrids after stability test.
Fig. S7 (A) XPS survey spectra and high-resolution P 2p (B), Co 2p (C) spectra of Co$_2$P@CoNPC hybrids after stability test.

Table S1 Summary of TMP-based electrocatalysts for OER in 1 M KOH.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Overpotential @J$_{10}$/mV</th>
<th>Tafel slope (mV dec$^{-1}$)</th>
<th>“P” sources</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoP$_3$ CPs</td>
<td>343</td>
<td>76</td>
<td>Red phosphorus</td>
<td>2</td>
</tr>
<tr>
<td>CoP/NCNHP</td>
<td>310</td>
<td>70</td>
<td>NaPO$_2$H$_2$</td>
<td>3</td>
</tr>
<tr>
<td>CoP/rGO-400</td>
<td>340</td>
<td>66</td>
<td>NaPO$_2$H$_2$</td>
<td>4</td>
</tr>
<tr>
<td>CoP hollow polyhedron</td>
<td>400</td>
<td>57</td>
<td>NaPO$_2$H$_2$</td>
<td>5</td>
</tr>
<tr>
<td>CoP/NC</td>
<td>319</td>
<td>52</td>
<td>NaPO$_2$H$_2$</td>
<td>6</td>
</tr>
<tr>
<td>Fe$_3$Co$_2$-P/C</td>
<td>362</td>
<td>50.1</td>
<td>NaPO$_2$H$_2$</td>
<td>7</td>
</tr>
<tr>
<td>NiCoP/C</td>
<td>330</td>
<td>96</td>
<td>NaPO$_2$H$_2$</td>
<td>8</td>
</tr>
<tr>
<td>Co$_2$P/CoNPC</td>
<td>328</td>
<td>78</td>
<td>Red phosphorus</td>
<td>9</td>
</tr>
<tr>
<td>C-CoP-1/12</td>
<td>333</td>
<td>71.1</td>
<td>NaPO$_2$H$_2$</td>
<td>10</td>
</tr>
<tr>
<td>Co2P@C</td>
<td>328</td>
<td>57</td>
<td>NaPO$_2$H$_2$</td>
<td>11</td>
</tr>
<tr>
<td>Co$_2$P/CoNPC</td>
<td>311</td>
<td>78</td>
<td>Phytic acid</td>
<td>This work</td>
</tr>
</tbody>
</table>

References

[S7] W. Hong, M. Kitta and Q. Xu, Small Methods, 2018, 2, 1800214.